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A B S T R A C T

Scene understanding is one of the fastest growing areas in computer
vision research. Such growth is mainly driven by the emergence of
deep learning techniques that contributed to boosting performance
on popular benchmarks for well-studied tasks, and to approaching
tasks that have been very difficult to solve with traditional techniques.
This dissertation examines how traditional low-level features such as
boundaries and points help in tackling higher-level scene understanding
tasks such as detection, segmentation, and 3D reconstruction.

First, we propose a hierarchical grouping algorithm that uses deeply
learned boundaries and their orientation. We examine how grouping
from predicted boundaries can help object detection and semantic
segmentation when plugged into the corresponding pipelines.

Second, we use human-generated points for guided object segmen-
tation. We show how to obtain segmented masks by using extreme
points provided by humans, and how to speed up the time-consuming
process of annotating for segmentation by using this technique.

Third, we show how automatically detected keypoints help 3D re-
construction in a complicated environment for robot-assisted retinal
surgery. The task is to provide visual guidance during surgery by using
two stereo cameras mounted on the surgical microscope. We propose a
method for calibration, 3D registration, and 3D reconstruction from a
single pipeline, by detecting specific robot keypoints, and by obtaining
3D to 2D correspondences just by moving the robot.

Last, we examine the interplay of low-level and high-level tasks
when trained jointly in a single neural network. We propose ways
to overcome problems such as task interference and limited capacity
as a result of jointly training for many different, unrelated tasks. We
propose a universal network that can tackle all tasks, but only one task
at a time.

All in all, we show how to predict low-level features and how they
contribute to different pipelines a) in combination with deep networks
trained for scene understanding b) as human-generated input, c) in
combination with 3D reconstruction, and d) by jointly training them
with higher-level tasks.
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Z U S A M M E N FA S S U N G

Szenenverständnis (Scene Understanding) ist einer der am schnellsten
wachsenden Bereiche in der Bildverarbeitung. Diese Entwicklung wird
hauptsächlich durch ”Deep LearningTechnologien angetrieben, die da-
zu beigetragen haben, die Genauigkeit in Benchmarks vieler klassischer
Problemstellungen der Computer Vision zu steigern und Aufgaben
anzugehen, die mit traditionellen Techniken nur sehr schwer zu lösen
waren. Diese Dissertation untersucht, auf welche Weise klassische low-
level Features, wie Objektränder oder Keypoints, der Bewältigung von
abstrakten SScene UnderstandingAufgaben, wie Objekterkennung, Seg-
mentierung und 3D-Rekonstruktion, dienen können.

Zuerst entwickeln wir einen hierarchischen Gruppierungsalgorith-
mus, basierend auf Objekträndern und deren Orientierung. Wir unter-
suchen, wie die Gruppierung aus prognostizierten Objekträndern die
Objekterkennung und semantische Segmentierung unterstützen kann,
wenn sie in die entsprechenden Pipelines eingesetzt wird.

Zweitens verwenden wir von Menschen annotierte Punkte, um die
automatisierte Segmentierung von Objekten zu führen. Wir zeigen, wie
man vollständige Segmentierungsmasken anhand von wenigen manuell
definierten Ëxtreme Pointsërhält, und wie man mit dieser Technik den
zeitaufwendigen Prozess der Annotierung für Segmentierungsaufgaben
beschleunigt.

Drittens zeigen wir, wie automatisch erkannte Keypoints die 3D-
Rekonstruktion in der komplexen Umgebung robotergestützter Netz-
hautchirurgie ermöglichen kann. Die Aufgabe besteht darin, anhand
eines am Operationsmikroskop montierten Stereokamerasystems, ei-
ne visuelle Führung während der Operation zu gewährleisten. Wir
schlagen dazu ein Verfahren zur Kalibrierung, 3D-Registrierung und
3D-Rekonstruktion basierend auf einer einzigen Pipeline vor, wobei wir
Roboter-spezifische Keypoints erkennen und 3D-zu-2D-Korrespondenzen
durch kontrollierte Bewegungen des Roboterarms erhalten.

Schliesslich untersuchen wir das Zusammenspiel von low-level- und
high-Level-Aufgaben, wenn sie gemeinsam in einem einzigen neuro-
nalen Netzwerk trainiert werden. Durch das gemeinsame Training für
viele verschiedene, voneinander unabhängige Aufgaben, können In-
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terferenzen zwischen Aufgaben und die begrenzte Netzwerkkapazität
problematisch werden. Wir zeigen, wie diese Probleme überwunden
werden können anhand eines universellen Netzwerks, das alle Aufga-
ben (sequentiell) bewältigt.

Zusammenfassend zeigen wir vier Wege auf, wie low-level Features
zum abstrakten, high-level Bildverstehen beitragen können: a) direkt,
durch deren robuste Schätzung, b) durch das Ermöglichen effizienter
manueller Annotierung, c) durch das Ermöglichen von 3D Rekonstruk-
tion, und d) durch gemeinsames Training mit high-level Aufgaben.
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Fabian Mentzer, David Brüggemann, Yuhua and Sergi for the incredi-
ble work environment. Actually, there were many distractions in the

xi



office, but we always had our noise-canceling headphones. These were
completely useless when Dr. Nikolay Kobyshev was talking loud on
the phone, 2 offices next to ours, and made it really feel as if he was in
the office somehow. I will certainly miss all of this.

I would like to thank my students Miriam Bellver, Alberto Montes,
and Apostolis Krystallidis for our collaboration, I hope you enjoyed it
as much as I did.

To all the CVL members and the alumni for all sorts of activities that
we did together, from everyday lunches to biking to Italy from Zurich
during midnight and swimming with dolphins in Hawaii, these are
memories I will never forget. Thank you.

To all the ‘Greeks in computer vision’ with whom we shared experi-
ences, thoughts, problems, advice, long-term plans: Georgios (not to
be confused with the name ‘George’), Petros, Christos, Stam, Despoina,
Menelaos, Kostas. Thank you.

In retrospect, one of the most life-changing moments in this ongoing
journey was my first exposure to Computer Vision in Prof. Petros
Maragos’ classes, and our work together in human action recognition.
Without his passion in teaching, and his guidance in my first steps,
this thesis would have definitely been impossible. Thank you Prof.
Maragos.

Any of these would be both impossible and meaningless without the
unconditional love and support from my parents: Kazuyo Kawamura
and Ioannis Maninis. The most special thanks goes to Evangelia, who
has made my life so enjoyable. Thank you for always being there, and
for all the life-changing decisions we have made together.

Finally, I thank Eureyecase and Specta.AI for funding my research,
providing with data, equipment, infrastructure, and supporting me
throughout my PhD.

xii



C O N T E N T S

1 introduction 1

2 convolutional oriented boundaries : from image seg-
mentation to higher-level tasks 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Deep Multiscale Oriented Contours . . . . . . . . . . . . 11

2.4 Fast Hierarchical Regions . . . . . . . . . . . . . . . . . . 14

2.5 Experiments on Low-Level Applications . . . . . . . . . . 17

2.5.1 Control Experiments/Ablation Analysis . . . . . 19

2.5.2 Contour Orientation . . . . . . . . . . . . . . . . . 20

2.5.3 Generic Image Segmentation . . . . . . . . . . . . 21

2.5.4 Object boundary detection . . . . . . . . . . . . . 24

2.5.5 RGB-D boundary detection on NYUD dataset . . 26

2.5.6 Efficiency Analysis . . . . . . . . . . . . . . . . . . 30

2.6 Experiments on High-Level Applications . . . . . . . . . 31

2.6.1 Object Proposals . . . . . . . . . . . . . . . . . . . 31

2.6.2 Semantic Boundaries and Semantic Segmentation 34

2.6.3 COB Object Proposals for Object Detection . . . . 36

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 deep extreme cut: from extreme points to object

segmentation 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Extreme points . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Segmentation from Extreme Points . . . . . . . . 44

3.3.3 Use cases for DEXTR . . . . . . . . . . . . . . . . . 45

3.4 Experimental Validation . . . . . . . . . . . . . . . . . . . 47

3.4.1 Implementation Details . . . . . . . . . . . . . . . 47

3.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Class-agnostic Instance Segmentation . . . . . . . 51

3.4.4 Annotation . . . . . . . . . . . . . . . . . . . . . . 53

3.4.5 Video Object Segmentation . . . . . . . . . . . . . 55

3.4.6 Interactive Object Segmentation . . . . . . . . . . 55

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii



4 automatic tool landmark detection for stereo vi-
sion in robot-assisted retinal surgery 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Automatic Surgical Instrument landmark localization . . 64

4.4 Automatic Calibration and 3D Reconstruction . . . . . . 66

4.4.1 Stereo Camera Calibration Using Robot Kinematics 66

4.4.2 Stereo Matching and Reconstruction . . . . . . . . 69

4.4.3 Registration . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Evaluation of Keypoint Localization . . . . . . . . 71

4.5.3 Evaluation of Calibration . . . . . . . . . . . . . . 74

4.5.4 Retinal Reconstruction and Tool Registration . . . 76

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 attentive single-tasking of multiple tasks 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Attentive Single-Tasking Mechanisms . . . . . . . . . . . 84

5.3.1 Task-specific feature modulation . . . . . . . . . . 85

5.3.2 Residual Adapters . . . . . . . . . . . . . . . . . . 86

5.4 Adversarial Task Disentanglement . . . . . . . . . . . . . 88

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 89

5.6 Additional Details and Experimental Evaluation . . . . . 97

5.6.1 More results on NYUD and FSV . . . . . . . . . . 97

5.6.2 Connection of ASTMT to UberNet . . . . . . . . . 98

5.6.3 ASTMT with MobileNet-v2 backbone . . . . . . . 99

5.6.4 Implementation Details . . . . . . . . . . . . . . . 100

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 additional research 105

6.1 Deep Retinal Image Understanding . . . . . . . . . . . . 105

6.2 One-Shot Video Object Segmentation . . . . . . . . . . . 105

6.3 Video Object Segmentation Without Temporal Information106

7 discussion 107

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . 107

7.2 Discussion, limitations, and future research . . . . . . . . 109

7.2.1 Convolutional Oriented Boundaries . . . . . . . . 109

7.2.2 Deep Extreme Cut . . . . . . . . . . . . . . . . . . 110

xiv



7.2.3 Automatic Tool Landmark Detection for Stereo
Vision in Robot-Assisted Retinal Surgery . . . . . 111

7.2.4 Attentive Single-Tasking of Multiple Tasks . . . . 112

7.3 Open-sourced contributions . . . . . . . . . . . . . . . . . 115

bibliography 117

index 143

xv



L I S T O F F I G U R E S

Figure 2.1 Overview of COB . . . . . . . . . . . . . . . . . . 6

Figure 2.2 The deep learning architecture of COB . . . . . . 9

Figure 2.3 Illustration of contour orientation learning . . . 12

Figure 2.4 Image Partition Representation . . . . . . . . . . 15

Figure 2.5 Polygon simplification . . . . . . . . . . . . . . . 21

Figure 2.6 Contour orientation . . . . . . . . . . . . . . . . . 21

Figure 2.7 PASCAL Context VOC test Evaluation . . . . . . 22

Figure 2.8 BSDS500 Test Evaluation . . . . . . . . . . . . . . 23

Figure 2.9 Qualitative results on PASCAL - Hierarchical
Regions . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.10 Qualitative results for Object Boundaries . . . . 26

Figure 2.11 Object Boundaries in PASCAL VOC 2012 . . . . 27

Figure 2.12 RGB-D Boundaries in NYUD test . . . . . . . . . 28

Figure 2.13 Data and results on NYUD . . . . . . . . . . . . 29

Figure 2.14 Segmented object proposals evaluation in PAS-
CAL Segmentation val and MS-COCO val . . . 32

Figure 2.15 Bounding-box object proposals evaluation on
PASCAL Segmentation val and MS-COCO val . 33

Figure 2.16 Qualitative results for Semantic Segmentation . 37

Figure 3.1 Example results of DEXTR . . . . . . . . . . . . . 40

Figure 3.2 Architecture of DEXTR . . . . . . . . . . . . . . . 43

Figure 3.3 Qualitative results by DEXTR in PASCAL . . . . 51

Figure 3.4 Quality vs. annotation budget . . . . . . . . . . . 54

Figure 3.5 Quality vs. annotation budget in video object
segmentation . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.1 Overview of our method . . . . . . . . . . . . . . 61

Figure 4.2 Stacked Hourglass Network (SHN) architecture
overview . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.3 Tool localization accuracy . . . . . . . . . . . . . 73

Figure 4.4 Qualitative results for keypoint localization . . . 74

Figure 4.5 Calibration accuracy . . . . . . . . . . . . . . . . 75

Figure 4.6 Pig Eye Reconstruction . . . . . . . . . . . . . . . 75

Figure 4.7 Generic Object Reconstruction . . . . . . . . . . . 76

Figure 4.8 Tool Registratio . . . . . . . . . . . . . . . . . . . 77

xvi



Figure 5.1 Learned representations across tasks and layers 80

Figure 5.2 Overview of ASTMT . . . . . . . . . . . . . . . . 81

Figure 5.3 Single-task network architecture . . . . . . . . . 85

Figure 5.4 Illustration of double back-propagation . . . . . 87

Figure 5.5 Performance vs. Resources . . . . . . . . . . . . . 95

Figure 5.6 t-SNE visualization of task-dependent feature
activations of a single image . . . . . . . . . . . . 96

Figure 5.7 Qualitative Results in PASCAL . . . . . . . . . . 97

Figure 5.8 Qualitative Results in NYUD . . . . . . . . . . . 98

Figure 5.9 Performance vs. Resources for MobileNet . . . . 101

L I S T O F TA B L E S

Table 2.1 Datasets and parameters for boundary detection 18

Table 2.2 Ablation analysis on VOC val . . . . . . . . . . . 20

Table 2.3 Timing experiments for COB . . . . . . . . . . . 31

Table 2.4 SBD val evaluation: maximal Fb . . . . . . . . . . 35

Table 2.5 SBD val evaluation: Average Precision (AP) . . . 35

Table 2.6 PASCAL VOC Segmentation val evaluation . . . 35

Table 2.7 VOC 2007 test evaluation . . . . . . . . . . . . . 35

Table 3.1 Manual vs. simulated extreme points . . . . . . 50

Table 3.2 Ablation study for DEXTR . . . . . . . . . . . . . 50

Table 3.3 Best components for DEXTR . . . . . . . . . . . . 51

Table 3.4 Comparison in PASCALEXT . . . . . . . . . . . . 52

Table 3.5 Comparison in the Grabcut dataset . . . . . . . . 52

Table 3.6 Generalization to unseen classes and across datasets 53

Table 3.7 Interactive Object Segmentation Evaluation . . . 56

Table 3.8 PASCAL and Grabcut Dataset evaluation . . . . 57

Table 4.1 CNN architecture ablation . . . . . . . . . . . . . 72

Table 4.2 Execution Times . . . . . . . . . . . . . . . . . . . 74

Table 5.1 Architecture capacity . . . . . . . . . . . . . . . . 90

Table 5.2 Multi-task benchmark statistics . . . . . . . . . . 92

Table 5.3 Baselines in PASCAL . . . . . . . . . . . . . . . . 92

Table 5.4 Type of Modulation . . . . . . . . . . . . . . . . . 92

Table 5.5 Location of SE modulation . . . . . . . . . . . . . 93

xvii



Table 5.6 Adversarial training . . . . . . . . . . . . . . . . . 93

Table 5.7 Backbones . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.8 Improvements from SE with modulation (SEA)
transfer to NYUD dataset . . . . . . . . . . . . . 94

Table 5.9 Improvements from SE with modulation (SEA)
transfer to FSV dataset . . . . . . . . . . . . . . . 94

Table 5.10 ASTMT for NYUD (top), and FSV (bottom) . . . 99

Table 5.11 UberNet for PASCAL (top), NYUD (mid), and
FSV (bottom) . . . . . . . . . . . . . . . . . . . . . 100

Table 5.12 Results using MobileNet in PASCAL . . . . . . . 101

xviii



1
I N T R O D U C T I O N

Recognizing and analyzing visual cues in images and videos is a fun-
damental goal of computer vision research. Methods and algorithms
that have been developed throughout decades constitute contributions
towards the unified goal of understanding the environment from visual
cues, exactly as humans can effortlessly do.

The very early approaches in computer vision consisted in purely
hand-crafted features that were intelligently designed. The community
invested a lot of efforts in finding invariant features that were robust to
changes that naturally occur in images and should not affect recognition
results, such as illumination changes, rotation, scaling, etc. One of the
most important findings was that gradient-based features [129, 14, 26,
46, 70] are robust to such changes, and thus suitable for recognition.
Parts of these pipelines were gradually substituted by learning-based
algorithms that automatically learned how to make decisions. For exam-
ple, machine learning techniques such as support vector machines [43]
or random forests [23] were used in conjunction with hand-crafted
features to enhance recognition performance. But still the features
remained a product of intelligent, but not automated, human design,
which make them sub-optimal when the assumptions made during
design do not hold.

Recently, a new learning paradigm that long existed but was limited
by hardware and availability of data received most-deserved atten-
tion. Deep learning, in the form of Convolutional Neural Networks
(CNN) [106] , applied to image classification, boosted performance
by a very large margin back in 2012 [103]. The main idea is to learn
the features and the classifier end-to-end, in a bottom-up fashion that
primarily depends on the availability of data. This was made possible
by modeling composition of functions by stacking together a sequence
of convolutions, non-linear activations, and pooling functions. The
large capacity of CNNs that can handle - and in fact, need - very large
amounts of data shifted the community’s attention from hand-crafted
features to data engineering and smart data acquisition techniques.
Ever since, the field is primarily dominated by modifications of CNN
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architectures that have become deeper [199, 202] and deeper [74, 133],
wider [229], or designed in a more principled way [218, 80, 40, 204].

CNNs are ever since revolutionizing the field of computer vision
and machine learning. Popular benchmarks that were very competitive
test-beds for various challenging tasks such as boundary detection and
grouping [144], optical flow [24], semantic segmentation [54, 122, 42]
or image classification [188] are today dominated by deep learning
approaches that often surpass human performance for the respective
tasks (in the controlled environments of the corresponding datasets).
Even though the community has come a long way in terms of what is
possible today compared to the past, there is still a lot to be explored.

The goal of this dissertation is to show that the use of low-level fetures,
i.e boundaries and points, can help many different tasks for higher-level
scene understanding, i.e semantic segmentation, guided segmentation,
object detection, 3D reconstruction; when coupled with the aforemen-
tioned modern deep learning pipelines. We show that low-level features
can be beneficial for higher-level tasks a) in combination with deep
networks trained for scene understanding (Chapter 2), b) as human-
generated input (Chapter 3), c) in combination with traditional pipelines
for 3D reconstruction 4), and d) by jointly training them with higher-
level tasks in a multi-task learning setup (Chapter 5). In particular, we
make the following four contributions:

• A deep-learning based approach to use multi-scale boundary
detection and region hierarchies for improving semantic segmen-
tation or object detection pipelines (Chapter 2). We present Convo-
lutional Oriented Boundaries (COB), which produces multi-scale
oriented contours and region hierarchies starting from generic
image classification CNNs. COB is computationally efficient,
because it requires a single CNN forward pass for multi-scale
contour detection and it uses a novel sparse boundary represen-
tation for hierarchical segmentation; it gives a significant leap
in performance over the state of the art, and it generalizes very
well to unseen categories and datasets. Particularly, we show
that learning to estimate not only contour strength but also ori-
entation provides more accurate results. We perform extensive
experiments for low-level applications on BSDS, PASCAL Context,
PASCAL Segmentation, and NYUD to evaluate boundary detec-
tion performance, showing that COB provides state-of-the-art
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contours and region hierarchies in all datasets. We also evaluate
COB on high-level tasks when coupled with multiple pipelines
for object proposals, semantic contours, semantic segmentation,
and object detection on MS-COCO, SBD, and PASCAL, showing
that COB also improves the results for all tasks.

• An efficient scheme to obtain segmented object masks from ex-
treme points using an end-to-end approach (Chapter 3). This
chapter explores the use of extreme points in an object (left-most,
right-most, top, bottom pixels) as input to obtain precise object
segmentation for images and videos. We do so by adding an
extra channel to the image in the input of a CNN, which con-
tains a heatmap with Gaussians centered in each of the extreme
points. The CNN learns to transform this information into a
segmentation of an object that matches those extreme points. We
demonstrate the usefulness of this approach for guided segmen-
tation, interactive segmentation, video object segmentation, and
dense segmentation annotation. We show that we obtain the most
precise results to date, also with less user input, in an extensive
and varied selection of benchmarks and datasets.

• A novel approach to predicting keypoints of surgical tools on
images and using them to jointly solve calibration, 3D registra-
tion, and 3D reconstruction in a complicated, uncalibrated setup
for robot-assisted retinal surgery (Chapter 4). In recent works,
such operations are conducted under a stereo-microscope, and
with a robot-controlled surgical tool. The complementarity of
computer vision and robotics has however not yet been fully ex-
ploited. In order to improve the robot control we are interested
in 3D reconstruction of the anatomy and in automatic tool lo-
calization using a stereo microscope. We solve this problem for
the first time using a single pipeline, starting from uncalibrated
cameras to reach metric 3D reconstruction and registration, in
retinal microsurgery. The key ingredients of our method are: (a)
surgical tool landmark detection, and (b) 3D reconstruction with
the stereo microscope, using the detected landmarks. To address
the former, we propose a novel deep learning method that detects
and recognizes keypoints in high definition images faster than
real time. We use the detected 2D keypoints along with their
corresponding 3D coordinates obtained from the robot sensors to
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calibrate the stereo microscope using an affine projection model.
We design an online 3D reconstruction pipeline that makes use of
smoothness constraints and performs robot-to-camera registration.
The entire pipeline is extensively validated on open-sky porcine
eye sequences. Quantitative and qualitative results are presented
for all steps.

• A solution to task interference and network capacity issues that
arise when trying to jointly train a universal CNN for multiple,
potentially unrelated low-level and higher-level tasks (Chapter 5).
We address these issues by considering that a network is trained
on multiple tasks, but performs one task at a time, an approach
we refer to as “single-tasking multiple tasks”. The network thus
modifies its behavior through task-dependent feature adaptation,
or task attention. This gives the network the ability to accentuate
the features that are adapted to a task, while shunning irrelevant
ones. We further reduce task interference by forcing the task
gradients to be statistically indistinguishable through adversarial
training, ensuring that the common backbone architecture serving
all tasks is not dominated by any of the task-specific gradients.
Results in three multi-task dense labeling problems consistently
show: (i) a large reduction in the number of parameters while
preserving, or even improving performance and (ii) a smooth
trade-off between computation and multi-task accuracy.
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2
C O N V O L U T I O N A L O R I E N T E D B O U N D A R I E S : F R O M
I M A G E S E G M E N TAT I O N T O H I G H E R - L E V E L TA S K S

We present Convolutional Oriented Boundaries (COB), which pro-
duces multiscale oriented contours and region hierarchies starting from
generic image classification Convolutional Neural Networks (CNNs).
COB is computationally efficient, because it requires a single CNN for-
ward pass for multi-scale contour detection and it uses a novel sparse
boundary representation for hierarchical segmentation; it gives a signif-
icant leap in performance over the state of the art, and it generalizes
very well to unseen categories and datasets. Particularly, we show
that learning to estimate not only contour strength but also orientation
provides more accurate results. We perform extensive experiments for
low-level applications on BSDS, PASCAL Context, PASCAL Segmenta-
tion, and NYUD to evaluate boundary detection performance, showing
that COB provides state-of-the-art contours and region hierarchies in all
datasets. We also evaluate COB on high-level tasks when coupled with
multiple pipelines for object proposals, semantic contours, semantic
segmentation, and object detection on MS-COCO, SBD, and PASCAL;
showing that COB also improves the results for all tasks.

2.1 introduction

The adoption of Convolutional Neural Networks (CNNs) has caused a
profound change and a large leap forward in performance throughout
the majority of fields in computer vision. In the case of a traditionally
category-agnostic field such as contour detection, it has recently fostered
the appearance of systems [97, 219, 17, 18, 195, 58] that rely on large-
scale category-specific information in the form of deep architectures
pre-trained on ImageNet [188] for image classification [103, 202, 199,
74].

This chapter introduces Convolutional Oriented Boundaries (COB), a
generic CNN architecture that allows end-to-end learning of multiscale
oriented contours, and we show how it translates top performing base
CNN networks into high-quality contours; allowing to bring future
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Figure 2.1: Overview of COB: From a single pass of a base CNN, we
obtain multiscale oriented contours. We combine them to
build Ultrametric Contour Maps (UCMs) at different scales
and fuse them into a single hierarchical segmentation struc-
ture.

improvements in base CNN architectures into semantic grouping. We
then propose a sparse boundary representation for efficient construction
of hierarchical regions from the contour signal. Our overall approach is
both efficient (it runs in 0.8 seconds per image) and highly accurate (it
produces state-of-the-art contours and regions on PASCAL and on the
BSDS). Figure 2.1 shows an overview of our system.

For the last fifteen years, the Berkeley Segmentation Dataset and
Benchmark (BSDS) [144, 11] has been the experimental testbed of choice
for the study of boundary detection and image segmentation. However,
the current large-capacity and very accurate models have underlined
the limitations of the BSDS as the primary benchmark for grouping.
Its 300 train images are inadequate for training systems with tens of
millions of parameters and, critically, current state-of-the-art techniques
are reaching human performance for boundary detection on its 200 test
images.

In terms of scale and difficulty, the next natural frontier for perceptual
grouping is the PASCAL VOC dataset [54], an influential benchmark
for image classification, object detection, and semantic segmentation
which has a trainval set with more than 10 000 challenging and varied
images. A first step in that direction was taken by Hariharan et al. [69],
who annotated the VOC dataset for category-specific boundary detec-
tion on the foreground objects. More recently, the PASCAL Context
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dataset [147] extended this annotation effort to all the background
categories, providing fully-parsed images which are a direct VOC coun-
terpart to the human ground truth of the BSDS. In this direction, this
chapter investigates the transition from the BSDS to PASCAL Context
in the evaluation of image segmentation.

We derive valuable insights from studying perceptual grouping in a
larger and more challenging empirical framework. Among them, we
observe that COB leverages increasingly deeper state-of-the-art architec-
tures, such as the recent Residual Networks [74], to produce improved
results. This indicates that our approach is generic and can directly ben-
efit from future advances in CNNs. We also observe that, in PASCAL,
the globalization strategy of contour strength by spectral graph parti-
tioning proposed in [11] and used in state-of-the-art methods [166, 97]
is unnecessary in the presence of the high-level knowledge conveyed by
pre-trained CNNs and oriented contours, thus removing a significant
computational bottleneck for high-quality contours.

We conduct two types of experiments, the first of which regards
low-level vision applications, such as contour detection and generic
segmentation on PASCAL Context and the BSDS500. We extend the
evaluation to the NYUD RGB-D dataset, showing that the pipeline of
COB can benefit from depth embeddings. We also include evaluation
of object contour detection on the PASCAL VOC’12 database. In all
cases, COB demonstrates state-of-the-art performance on contours and
regions while being computationally efficient.

In a second set of experiments, we study the interplay of COB with
various downstream recognition applications. We use our hierarchical
regions as input to the combinatorial grouping algorithm of [166]
and obtain state-of-the-art segmented object proposals on PASCAL
VOC’12 Segmentation by a significant margin. Furthermore, we provide
empirical evidence for the generalization power of COB by evaluating
our object proposals without any retraining in the even larger and more
challenging MS-COCO [122] dataset, where we also report competitive
results compared to the state of the art. We have also studied the
effects of COB when coupled with well-known pipelines, showing that
injecting COB detections to them lead to improvements on Semantic
Segmentation and Object Detection. Finally, we report a new state of
the art on Semantic Boundary detection.

Our approach to segmentation has also found application in retinal
image segmentation [140], obtaining state-of-the-art and super-human
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performance in vessel and optic disc segmentation, which further high-
lights its generality. Furthermore, in a different line of our work we
show that using the superpixels generated from COB enhances perfor-
mance for video object segmentation [25, 136].

2.2 related work

Contour Detection: Early approaches to contour detection relied on
local gradient measurements in an image [184, 95, 170]. These simple
edge detectors operate by applying local derivative filters on grayscale
images. Gradient filtering was followed by detection of zero cross-
ings [142], or by non-maximum suppression [26].

Such simple gradient techniques are unable to handle information
captured by richer features such as color and texture [143], or Statistical
Edges [99]. Martin et al. [143] define rich gradient operators out of color,
brightness and texture, and use them as input to a logistic regression
classifier. Their approach is extended by Arbeláez et al. [11], to combine
contours at multiple scales.

Machine Learning techniques contributed to learnable features and
classifiers that boosted contour detection performance, especially af-
ter the manual annotation of the BSDS database [143, 11]. The BEL
algorithm [47] attempts to learn an edge classifier in the form of a
probabilistic boosting tree. Kokkinos [96] trains an orientation-sensitive
boundary detector using Multiple-Instance Learning. Ren and Bo [180]
use patch representations automatically learned through sparse coding.
Sketch Tokens [118] and Structured Edges [48] tackle both accuracy and
speed, by using random forests to classify the central pixel of patches.

The latest wave of contour detectors takes advantage of deep learning
to obtain state-of-the-art results [97, 219, 17, 18, 195, 58, 19]. Ganin
and Lempitsky [58] use a deep architecture to extract features of image
patches. They approach contour detection as a multi-class classification
task, by matching the extracted features to predefined ground-truth
features. The authors of [17, 18] make use of features generated by
pre-trained CNNs to regress contours. They prove that object-level
information provides powerful cues for the prediction of contours.
Shen et al. [195] learn deep features using shape information. Xie and
Tu [219] provide an end-to-end deep framework to boost the efficiency
and accuracy of contour detection, using convolutional feature maps
and a novel loss function. An extended version of their work, with many
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Figure 2.2: The deep learning architecture of COB: The connections
show the different stages that are used to generate the mul-
tiscale contours. Orientations further require additional
convolutional layers in multiple stages of the network (best
viewed in color).

additional experiments can be found in [220]. Kokkinos [97] builds
upon [219] and improves the results by tuning the loss function, running
the detector at multiple scales, adding GPU-optimized globalization,
and exploiting multi-instance learning in end-to-end training.

What many of the aforementioned methods have in common is that
several simple components contribute to increased performance: (i)
information at multiple scales [179, 11, 166, 97], (ii) contour orienta-
tion [67, 96, 11, 118], and (iii) end-to-end deep learning [219, 97]. COB
is able to combine all of the above in a single pass of a CNN, producing
an output that is richer than a linear combination of cues at different
scales.

At the core of all these deep learning approaches lies a base CNN, start-
ing from the seminal AlexNet [103] (8 layers), through the more complex
VGGNet [199] (16 layers) and inception architecture of GoogLeNet [202]
(22 layers), to the very recent and very deep ResNets [74] (up to 1001

layers). Image classification results, which originally motivated these
architectures, have been continuously improved by exploring deeper
and more complex networks. In this chapter, we present results both
using VGGNet and ResNet, showing that COB is modular and can
incorporate and benefit from future improvements in the base CNN.

Recent work has also explored weakly supervised or unsupervised
deep learning of contours: Khoreva et al. [90] learn from the results
of generic contour detectors coupled with object detectors; and Li et
al. [115] train contour detectors from motion boundaries acquired from
video sequences. Yang et al. [225] use Conditional Random Fields
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(CRFs) to refine the inaccurately localized boundary annotations of
PASCAL. Some works shift the domain of contours detection from
abstract perceptual grouping to better defined tasks such as semantic
or object contour detection [69, 90, 225]. Some methods also combine
RGB-D cues for contour detection [65, 66, 48]. Extensive experiments
on such benchmarks show that COB has an excellent performance even
when shifting domains, showing state-of-the-art performance also in
these new situations.

Hierarchical Image Segmentation and Grouping: One of the most
studied category of methods for image segmentation are spectral meth-
ods, that rely on the generalized eigenvalue problem to solve a low-level
pixel grouping problem. Notable approaches that fall into this category
are Normalized Cuts [196], PMI [84], gPb [11], MCG [166]. Arbeláez
et al. [11] showed the usefulness for jointly optimizing contours and
regions (The duality between contours and regions was first studied
by Najman and Schmitt [150]). Pont-Tuset et al. [166] leveraged multi-
resolution contour detection and proved its interest for generating object
proposals. COB also exploits the duality between contour detection and
segmentation hierarchies. We differentiate from previous approaches
mainly in two aspects. First, our sparse boundary representation trans-
lates into a clean and highly efficient implementation of hierarchical
segmentation. Second, by leveraging high-level knowledge from the
CNNs in the estimation of contour strength and orientation, our method
benefits naturally from global information, which allows bypassing the
globalization step (output of normalized cuts), a bottleneck in terms of
computational cost, but a cornerstone of previous approaches.

Current lines of work: After the conference [138]/journal [139] ver-
sions of COB, several interesting works were published. Liu et al. [125]
study how to make better use of intermediate feature-maps for edge
prediction. Kong and Fawlkes learn pixel-level grouping by using a
differentiable version of mean-shift, an idea closely related to [134] who
learn affinities end-to-end. Other works focus on learning semantic
edge detection in an end-to-end manner [228, 1] and outperform the
results that we obtain in this chapter. The authors of [93] approach
semantic instance segmentation from semantic segmentation by using
region hierarchies. Related to learning of boundary orientation, [212]
learn boundary orientations together with their strength, in order to
assign foreground-background identities to the objects the boundaries
belong to. In our contribution for video object segmentation [25, 136]
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we show how performance can be further enhanced by snapping pre-
liminary estimations to COB superpixels, exactly as shown in this
chapter.

2.3 deep multiscale oriented contours

CNNs are by construction multi-scale feature extractors. If one exam-
ines the standard architecture of a CNN consisting of convolutional and
spatial pooling layers, it becomes clear that as we move deeper, feature
maps capture more global information due to the decrease in resolution.
For contour detection, this architecture implies local and fine-scale con-
tours at shallow levels, coarser spatial resolution and larger receptive
fields for the units when going deeper and, consequently, more global
information for predicting boundary strength and orientation. CNNs
have therefore a built-in globalization strategy for contour detection,
analogous to the hand-engineered globalization of contour strength
through spectral graph partitioning in [11, 166].

Figure 2.2 depicts how we make use of information provided by the
intermediate layers of a CNN to detect contours and their orientations
at multiple scales. Different groups of feature maps contain different,
scale-specific information, which we combine to build a multiscale
oriented contour detector. The remainder of this section is devoted to
introducing the recent approaches to contour detection using deep learn-
ing, to presenting our CNN architecture to produce contour detection
at different scales, and to explaining how we estimate the orientation
of the edges; all in a single CNN forward pass at the image level.

Training deep contour detectors: The recent success of [219] is based
on a CNN to accurately regress the contours of an image. Within this
framework, the idea of employing a CNN in an image-to-image fashion
without any post-processing has proven successful, and lead to a big
leap in performance for the task of contour detection. Their network,
HED, produces scale-specific contour images (side outputs) for different
scales of a network, and combines their activations linearly to produce a
contour probability map. Using the notation of the authors, we denote
the training dataset by S = {(Xn, Yn) , n = 1, . . . , N}, with Xn being the
input image and Yn = {y(n)j , j = 1, . . . , |Xn|}, y(n)j ∈ {0, 1} the predicted
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Figure 2.3: Illustration of contour orientation learning: Row 1 shows
the responses Bk for 4 out of the 8 orientation bins. Row 2,
from left to right: original image, contour strength, learned
orientation map into 8 orientations, and hierarchical bound-
aries.

pixelwise labels. For simplicity, we drop the subscript n. Each of the M
side outputs minimizes the objective function:

`
(m)
side

(
W,w(m)

)
=− β ∑

j∈Y+

log P
(

yj = 1|X; W, w(m)
)

−(1−β) ∑
j∈Y−

log P
(

yj =0|X; W,w(m)
)

(2.1)

where `
(m)
side is the loss function for scale m ∈ {1, . . . , M}, W denotes the

standard set of parameters of the CNN, and {w(m), m = 1, . . . , M} the
corresponding weights of the the m-th side output. The multiplier β is
used to handle the imbalance of the substantially greater number of
background compared to contour pixels. Y+ and Y− denote the contour
and background sets of the ground-truth Y, respectively. The probability
P (·) is obtained by applying a sigmoid σ (·) to the activations of the
side outputs Â(m)

side = {a(m)
j , j = 1, . . . , |Y|}. In HED, the activations

are finally fused linearly, as: Ŷf use = σ
(

ΣM
m=1hm Â(m)

side

)
where h =

{hm, m = 1, . . . , M} are the fusion weights. The fusion output is also
trained to resemble the ground-truth applying the same loss function of
Equation 2.1, by optimizing the complete set of parameters, including
the fusion weights hm. We instead take advantage of the common CNN
architectures to regress both the strength of the coarse and detailed
(fine) contours, as well as the contour orientations. COB combines these
output channels non-linearly to a single hierarchical segmentation.
Inside this segmentation, the placement of each region in the hierarchy
is determined by the strength of the boundaries to the neighbouring
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regions. All in all, COB efficiently combines contour strengths and
orientations into a segmentation hierarchy which can further facilitate
high-level vision tasks related to segmented object proposals. In the rest
of the chapter we use the class-balancing cross-entropy loss function of
Equation 2.1.

Multiscale contours: We start from a deep network pre-trained on
ImageNet [188], such as VGG [199] or ResNet [74]. The fully connected
layers used for classification are removed, and so are the batch normal-
ization layers, since we operate on one image per iteration. Therefore,
the network consists mainly of convolutional layers coupled with ReLU
activations, divided into 5 stages. We will refer to this architecture
as the base CNN of our implementation. Each stage is handled as a
different scale, since it contains feature maps of a similar size. At the
end of a stage, there is a max pooling layer, which reduces the spatial
dimensions of the produced feature maps to a half. As discussed before,
the CNN naturally contains multiscale information, which we exploit
to build a multiscale contour regressor.

We separately supervise the output of the last layer of each stage (side
activation), comparing it to the ground truth using the loss function of
Equation 2.1. This way, we enforce each side activation to produce an
intermediate contour map at different resolution. The idea of supervis-
ing intermediate parts of a CNN has successfully been used in previous
approaches, for a variety of tasks [202, 108, 219]. In the 5-scale base
CNN illustrated in Figure 2.2, we linearly combine the side activations
of the 4 finest and 4 coarsest scales to a fine-scale and a coarse-scale
output (Ŷf ine and Ŷcoarse, respectively) with trainable weights. The finer
scale contains better localized contours, whereas the coarse scale leads
to less noisy detections. To train the two sets of weights of the linear
combinations, we freeze the pre-trained weights of the base CNN.

Estimation of Contour Orientations: In order to predict accurate
contour orientations, we propose an extension of the CNN that we
use to predict contour strength. We define the task as pixel-wise
image-to-image multiscale classification into K bins. We connect K
different branches (sub-networks) to the base network, each of which
is associated with one orientation bin, and has access to feature maps
that are generated from the intermediate convolutional layers at M
different scales. We assign the parts of the CNN associated with each
orientation a different task from the base network: classify the pixels
of the contours that match a specific orientation. In order to design
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these orientation-specific subtasks, we classify each pixel of the human
contour annotations into K different orientations. The orientation of
each contour pixel is obtained by approximating the ground-truth
boundaries with polygons, and assigning each pixel the orientation of
the closest polygonal segment, as shown in Figure 2.5. As in the case
of multiscale contours, the weights of the base network remain frozen
when training these sub-networks.

Each sub-network consists of M convolutional layers, each of them
appended on different scales of the base network. Thus we need M ∗ K
additional layers. In our setup, we use K = 8 and M = 5. All K
orientations are regressed in parallel, and since they are associated with
a certain angle, we post-process them to obtain the orientation map.
Specifically, the orientation map is obtained as:

O(x, y) = T
(

arg max
k

Bk (x, y)
)

, k = 1, . . . , K (2.2)

where Bk(x, y) denotes the response of the k-th orientation bin of the
CNN at the pixels with coordinates (x, y) and T (·) is the transfor-
mation function which associates each bin with its central angle. For
the cases where two neighboring bins lead to strong responses, we
compute the angle as their weighted average. At pixels where there
is no response for any of the orientations, we assign random values
between 0 and π, not to bias the orientations. The different orientations
as well as the resulting orientation map (color-coded) are illustrated in
Figure 2.3.

In [11, 48, 166] the orientations are computed by means of local
gradient filters. In Section 2.5 we show that our learned orientations
are significantly more accurate and lead to better region segmentations.

2.4 fast hierarchical regions

This section is devoted to building an efficient hierarchical image seg-
mentation algorithm from the multiscale contours and the orientations
extracted in the previous section. We build on the concept of Ultramet-
ric Contour Map (UCM) [11], which transforms a contour detection
probability map into a hierarchical boundary map, which gets parti-
tions at different granularities when thresholding at various contour
strength values. Despite the success of UCMs, their low speed limits
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their applicability. We address this issue by using an alternative repre-
sentation of an image partition which reduces the computation time of
UCMs by an order of magnitude.

Sparse Boundary Representation of Hierarchies of Regions: An
image partition is a clustering of the set of pixels into different sets,
which we call regions. The most straightforward way of representing it
in a computer is by a matrix of labels, as in the example in Figure 2.4(a),
with three regions on an image of size 2×3. The boundaries of this
partition are the edge elements, or edgels, between the pixels with
different labels (highlighted in red). We can assign different strengths
to these boundaries (thicknesses of the red lines), which indicate the
confidence of that piece of being a boundary. By iteratively erasing these
boundaries in order of increasing strength we obtain different partitions,
which we call hierarchy of regions, or Ultrametric Contour Maps.

These boundaries are usually stored in the boundary grid (Figure 2.4(b)),
a matrix of double the size of the image (minus one), in which the odd
coordinates represent pixels (gray areas), and the positions in between
represent boundaries (red numbers) and junctions (crossed positions).
UCMs use this representation to store their boundary strength values,
that is, each boundary position stores the threshold value beyond which
that edgel disappears and the two neighboring regions merge. This way,
by simply binarizing a UCM we have a partition represented as a bound-
ary grid. Continuing with the example in Figure 2.4, binarizing the
UCM at 0.5 the edge between region 2 and 3 would disappear, that is, 2

and 3 would merge and create a new region.
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Figure 2.4: Image Partition Representation:
(a) Pixel labeling, each pixel gets assigned a region label.
(b) Boundary grid, markers of the boundary positions. (c)
Sparse boundaries, lists of boundary coordinates between
neighboring regions.
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This representation becomes very inefficient at run time, where the
percentage of activated boundaries is very sparse. Not only are we
wasting memory by storing those empty boundaries, but it also makes
operating on them very inefficient by having to sweep over the entire
matrix to perform a modification on a single boundary piece.

Inspired by how sparse matrices are handled, we designed the sparse
boundaries representation (Figure 2.4(c)). It stores a look-up table for
pairs of neigboring regions, their boundary strength, and the list of
coordinates the boundary occupies. Apart from being more compact
in terms of memory, this representation enables efficient operations
on specific pieces of a boundary, since one only needs to perform a
search in the look-up table and scan the activated coordinates; instead
of sweeping the whole boundary grid.

Fast Hierarchies from Multiscale Oriented Contours: We are in-
spired by the framework proposed in [166], in which a UCM is obtained
from contours computed at different image scales and then combined
into a single hierarchy. The motivation behind this work is that the
UCMs obtained from downscaled images will focus on the coarse struc-
tures and ignore textures, so their localization accuracy will decrease.
On the other hand, upscaled images will bring very good localization
in the boundaries, but it will be harder to distinguish between the
high- and low-level contents. To bring the best of the two worlds,
[166] progressively projects the coarse hierarchies into the finer ones
by adapting the high-level contours into the better localized ones. The
final hierarchy keeps the high-level information while being snapped
to the correctly localized low-level boundaries.

The deep CNN presented in Section 2.3 provides different levels of
detail for the image contours, so instead of processing the image at
multiple resolutions we use the different outputs that are computed in
a single pass of the CNN to obtain different hierarchies that focus on
high- and low-level features.

A drawback of the original framework [166], however, is that the
manipulation of the hierarchies and their projection to different scales
is very slow (in the order of seconds), so the operations on the UCMs
had to be performed at a small subset of the contour strengths (from
thousands to a few dozens). By using the fast sparse boundary represen-
tation, we can operate on all thousands of contour strengths, yielding
better results at a fraction of the original cost. Moreover, we use the
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learned contour orientations for the computation of the Oriented Wa-
tershed Transform (OWT) [11], further boosting performance.

2.5 experiments on low-level applications

This section presents the empirical evidence that supports our approach
for low-level applications (image segmentation and contour detection).
First, Section 2.5.1 explores ablated and baseline techniques in order to
isolate and quantify the improvements due to different components of
our system. Section 2.5.2 further analyzes and evaluates the proposed
contour orientations. In Section 2.5.3, Section 2.5.4, and Section 2.5.5
we compare our results against the state of the art in generic RGB
image segmentation, RGB object boundary detection, and RGB-D image
segmentation, respectively. In all three cases, we obtain the best results
to date by a significant margin. Finally, Section 2.5.6 analyzes the effect
of the various components in terms of speed on COB.

In terms of datasets, we extend the main BSDS benchmark [143] to
the PASCAL Context dataset [147], which contains carefully localized
pixel-wise semantic annotations for the entire image on the PASCAL
VOC 2010 detection train-val set. This results in 459 semantic categories
across 10 103 images, which is an order of magnitude (20×) larger
than the BSDS. In order to allow training and optimization of large
capacity models, we split the data into train, validation, and test sets as
follows: VOC train corresponds to the official PASCAL Context train
with 4 998 images, VOC val corresponds to half the official PASCAL
Context validation set with 2 607 images and VOC test corresponds to
the second half with 2 498 images. In the remainder of the chapter, we
refer to this dataset division. Note that, in contrast to the BSDS, in this
setting boundaries are defined between different semantic categories
and not between their parts.

In all our experiments for boundary detection and image segmenta-
tion, we used the standard evaluation benchmark evaluating boundaries
(Fb [143]) and regions (Fop [167]). Through the literature, the tolerance in
the boundary localization metric Fb is altered (the maxDist parameter),
depending on the database and the quality of the annotations. To avoid
confusion, we list the value of this parameter for all our experiments in
Table 2.1. Please also note that methods that produce open contours
instead of regions can not be evaluated using the region measure Fop. In
all the produced curves, markers indicate the optimal operating point
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that maximizes Fb and Fop. We used the publicly available Caffe [86]
framework for training and testing CNNs, and all the state-of-the-art
results are computed using the publicly-available code provided by the
respective authors.

Training details: In our two-step training approach, we first train
the base networks for the task of contour detection (coarse and fine).
We use stochastic gradient descent with a momentum of 0.9 and weight
decay of 0.0002 for 40k iterations. The base learning rate is set to
10−6, and is divided by 10 after 30k iterations. After the first step is
finished, the weights of the base network are frozen, and the layers
of the orientation sub-network are connected and trained for an addi-
tional 10k iterations. Depending to the size of dataset we use different
data augmentation strategies: flipping and rotation into 4 angles for
PASCAL and NYUD; flipping, rotation into 16 angles, and scaling into
3 scales [219] for BSDS500. In all cases, we initialize the network from
ImageNet pre-trained weights. The same ground-truth boundaries are
used for training both the fine and the coarse contours.

Database Task train test maxDist

BSDS500 Generic Segmentation 300 200 0.0075

VOC Context Generic Segmentation 7 605 2 498 0.0075

VOC’12 Segm. Object Contours 1 464 1 449 0.01

NYUD RGB-D Segmentation 795 654 0.011

SBD Semantic Contours 8 498 2 857 0.02

VOC’12 Segm. Semantic Segmentation 1 464 1 449 -
COCO Object Proposals - 40 504 -
VOC’07 Object Detection 5 011 4 952 -

Table 2.1: Datasets and parameters for boundary detection: The list
of databases used to evaluate our approach on various low-
level and high-level tasks. We report the number of images
used for training and testing our algorithm, along with the
tolerance for contour localization used in the literature, when
applicable. In all our experiments, we keep those numbers
unchanged.
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2.5.1 Control Experiments/Ablation Analysis

This section presents the control experiments and ablation analysis
to assess the performance of all subsystems of our method. We train
on VOC train, and evaluate on VOC val set. We report the standard
F measure at Optimal Dataset Scale (ODS) and Optimal Image Scale
(OIS), as well as the Average Precision (AP), both evaluating boundaries
(Fb [143]) and regions (Fop [167]).

Table 2.2 shows the evaluation results of the different variants, high-
lighting whether we include globalization and/or trained orientations.
As a first baseline, we test the performance of MCG [166], which uses
Structured Edges [48] as input contour signal. We then substitute SE
by the newer HED [219], trained on VOC train as input contours and
denote it MCG-HED. Note that the aforementioned baselines require
multiple passes of the contour detector (3 scales).

In the direction of using the side outputs of the base CNN archi-
tecture as multiscale contour detections in one pass, we tested the
baseline of naively taking the 5 side outputs directly as the contour
detections. We trained both VGGNet [199] and ResNet50 [74] on VOC
train and combined the 5 side outputs with our fast hierarchical regions
of Section 2.4 (VGGNet-Side and ResNet50-Side).

We finally evaluate different variants of our system, as presented
in Section 2.3. We first compare our system with two different base
architectures: Ours (VGGNet) and Ours (ResNet50). We observe that
the deeper architecture of ResNet translates into better boundaries
and regions. Using the even deeper counterparts of ResNet lead to
negligible gain in accuracy while significantly sacrificing speed.

We then evaluate the influence of our trained orientations and glob-
alization, by testing the four possible combinations (the orientations
are further evaluated in the next section). Our method using ResNet50

together with trained orientations leads to the best results both for
boundaries and for regions. The experiments also show that, when
coupled with trained orientations, globalization even decreases perfor-
mance, so we can safely remove it and get a significant speed up. This
behaviour arises from the fact that the image-to-image architecture of
the base CNN already captures global information, addressing issues
that could not be handled by local approaches, e.g., deleting internal
contours of objects. Our technique with trained orientations and with-
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out globalization is therefore selected as our final system and will be
referred to in the sequel as Convolutional Oriented Boundaries (COB).

2.5.2 Contour Orientation

We evaluate contour orientation results by the classification accuracy
into 8 different orientations, to isolate their performance from the
global system. We compute the ground-truth orientations as depicted
in Figure 2.5 by means of the sparse boundaries representation. We then
sweep all ground-truth boundary pixels and compare the estimated
orientation with the ground-truth one. Since the orientations are not
well-balanced classes (much more horizontal and vertical contours), we
compute the classification accuracy per each of the 8 classes and then
compute the mean.

Figure 2.6 shows the classification accuracy with respect to the confi-
dence of the estimation. We compare our proposed technique against
the local gradient estimation used in previous literature [11, 48, 166]. As
a baseline, we plot the result a random guess of the orientations would
get. We observe that our estimation is significantly better than the pre-
vious approach. As a summary measure, we compute the area under
the curve of the accuracy (ours 58.6%, local gradients 41.2%, random
12.5%), which corroborates the superior results from our technique.

Boundaries - Fb Regions - Fop
Method Global. Orient. ODS OIS AP ODS OIS AP

MCG [166] 3 7 0.548 0.594 0.519 0.355 0.419 0.263

MCG-HED 3 7 0.691 0.727 0.693 0.459 0.520 0.374

VGGNet-Side 3 7 0.644 0.683 0.664 0.439 0.505 0.351

ResNet50-Side 3 7 0.676 0.711 0.681 0.456 0.521 0.374

Ours (VGGNet) 7 3 0.705 0.735 0.741 0.466 0.533 0.384

Ours (ResNet50) 7 7 0.734 0.767 0.757 0.475 0.545 0.405

Ours (ResNet50) 3 7 0.726 0.759 0.725 0.461 0.531 0.395

Ours (ResNet50) 3 3 0.732 0.763 0.731 0.481 0.554 0.418
Ours (ResNet50) 7 3 0.737 0.768 0.758 0.483 0.553 0.417

Table 2.2: Ablation analysis on VOC val: Comparison of different ab-
lated and baseline versions of our system.
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Figure 2.5: Polygon simplification: From all boundary points (left) to
simplified polygons (right), which are used to compute the
ground-truth orientation robustly.
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Figure 2.6: Contour orientation: Classification accuracy into 8 bins.

2.5.3 Generic Image Segmentation

We present our results for contour detection and generic image seg-
mentation on PASCAL Context [147] as well as on the BSDS500 [144],
which is the most established benchmark for perceptual grouping.

PASCAL Context: We train COB in the VOC train, and perform
hyper-parameter selection on VOC val. We report the final results on
the unseen VOC test when trained on VOC trainval, using the previously
tuned hyper-parameters. We compare our approach to several methods
trained on the BSDS [48, 166, 234, 219] and we also retrain the current
state-of-the-art contour detection methods HED [219] and the recent
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Figure 2.7: PASCAL Context VOC test Evaluation: Precision-recall
curves for evaluation of boundaries (Fb [143]), and regions
(Fop [167]). Open contour methods in dashed lines and
closed boundaries (from segmentation) in solid lines. ODS,
OIS, and AP summary measures. Markers indicate the opti-
mal operating point, where Fb and Fop are maximized.
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NCuts [196] 0.213 0.270 0.096
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Figure 2.8: BSDS500 Test Evaluation: Precision-recall curves for evalu-
ation of boundaries (Fb [143]), and regions (Fop [167]).
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CEDN [225] on VOC trainval using the code provided by the respective
authors.

Figure 2.7 presents the evaluation results of COB compared to the
state of the art, showing that it outperforms all others by a considerable
margin both in terms of boundaries and in terms of regions. The
lower performance of the methods trained on the BSDS quantifies the
difficulty of the task when moving to a larger and more challenging
dataset.

BSDS500: We retrain COB using only the 300 trainval images of
the BSDS, after data augmentation as suggested in [219], keeping the
architecture decided in Section 2.5.1. For comparison to HED [219], we
used the model that the authors provide online. We also compare with
CEDN [225], by evaluating the results provided by the authors.

Figure 2.8 presents the evaluation results, which show that we also
obtain state-of-the-art results in this dataset. The smaller margins are in
all likelihood due to the fact that we almost reach human performance
for the task of contour detection on the BSDS, which motivates the shift
to PASCAL Context to achieve further progress in the field.

Qualitative Results: Figure 2.9 shows some qualitative results of
our hierarchical contours. Please note that COB is capable of correctly
distinguishing between internal contours and external, semantically
meaningful boundaries.

2.5.4 Object boundary detection

Concurrent works presented results on object boundary detection [225,
90] on the PASCAL VOC’12 Segmentation database. The database
consists of 1464 training and 1449 validation images, including pixel-
wise annotations of the instances and the semantic classes of the objects.
The goal is to detect the boundaries of the objects that belong to the
20 classes of PASCAL, without distinguishing the semantics. Different
from generic image segmentation, boundaries that do not belong to an
object are treated as background.

We retrain COB on VOC’12 train set and report the results on the
validation set. We use the instance level annotation of the database,
and extract contours from the semantic segmentation annotations of
the database. The uncertain areas (annotated with value of 255) are
treated as background. We compare to several baselines, together with
recent state-of-the-art results. Specifically, Khoreva et al. [90] retrained
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Figure 2.9: Qualitative results on PASCAL - Hierarchical Regions:
Row 1: original images, Row 2: ground-truth boundaries,
Row 3: hierarchical regions with COB.

HED [219] on object contours, and Yang et al. [225] proposed a novel
encoder-decoder architecture to tackle the same task. We evaluate the
best pre-computed results provided by the authors in both cases. The
results are quantified in Figure 2.11. We observe that COB obtains state-
of-the-art results in all metrics. CEDN [225] performs better in the high
precision regime. However, the authors used extra images from the SBD
dataset [69] for training their detector. Also, CEDN is trained on an
improved version of the ground truth, aligning the uncertain areas of
VOC’12 with the the true image boundaries by using a CRF. We report
results of COB trained only on VOC’12 train set, to be consistent with
the results of Khoreva et al. [90]. In this experiment, we use maxDist of
0.01, as is adopted by the literature [210, 90].

Figure 2.10 illustrates some qualitative results, as well as the differ-
ences of generic segmentation and object boundary detection. We show
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our results on images of the VOC’12 val set using the model trained
on PASCAL Context for generic image segmentation, and we compare
qualitatively to the model retrained on the 20 classes of VOC’12 for
object boundary detection. In the latter case, the detections are fo-
cused on the 20 object classes, disregarding strong contour cues of the
background that are detected by the generic segmentation model.

2.5.5 RGB-D boundary detection on NYUD dataset

The NYUD (v2) dataset [151] consists of 1449 RGB-D indoor images,
divided into splits of 795 training and 654 testing images, with the

Figure 2.10: Qualitative results for Object Boundaries: Row 1: origi-
nal images, Row 2: Generic Image Segmentation results,
Row 3: Object Boundary results.
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Figure 2.11: Object Boundaries in PASCAL VOC 2012: Precision-
recall curves for boundaries (Fb [143]), and regions
(Fop [167]). ODS, OIS, and AP summary measures.
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Figure 2.12: RGB-D Boundaries in NYUD test: Precision-recall curves
for evaluation of boundaries (Fb [143]), and regions
(Fop [167]). ODS, OIS, and AP summary measures.
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Figure 2.13: Data and results on NYUD: From left to right: RGB im-
age, depth, HHA features [66], ground truth, and COB
detections.

corresponding semantic and instance level segmentations. Gupta et
al. [65] adopted this dataset for contour detection. In their experiments,
they obtained the respective boundary annotations from the instance-
level segmentations of the dataset. We evaluated the performance by
using the standard benchmarks of BSDS. Following [48, 219, 66], we
increased the tolerance for incorrect localizations from 0.0075 of the
image diagonal to 0.11, to compensate for inaccurate annotations of
boundaries.

We use the extra information of depth to train different variants
of COB on the NYUD dataset. Gupta et al. [66] used the camera
parameters of the images to encode the depth information in three
channels: horizontal disparity, height above ground, and the angle of
the local surface normal with the inferred gravity direction at each
pixel (HHA). We retrain three different variants of the CNN: (a) Only
using RGB data (ResNet50-RGB), (b) Incorporating depth information
into a fourth channel (ResNet50-RGBD), and (c) Concatenating RGB
and HHA channels and operate on 6 channels directly (ResNet50-
RGB-HHA). Figure 2.13 illustrates an overview of the data, along
with depth and HHA features that we used, as well as the results
obtained by COB. In Figure 2.12 we show the ablation analysis by
directly evaluating the CNN output, without any post-processing. We
observe that the CNNs retrained on RGB and RGB-HHA channels
obtain significantly better results than the one trained on RGB-D data,
showing that HHA features provide an appropriate encoding for depth
information. We retrain the full pipeline of COB (including orientations)
on NYUD and we report the precision-recall curves. We compare with
various state-of-the-art methods, showing significant improvements.
Specifically, we compare with the SE [48] detector retrained on the
RGB-D data of NYUD, the detector proposed by [66] trained on RGB
and depth normal gradients, and the best result reported on NYUD
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by HED [219], where the authors trained two different variants of
the detector on RGB and HHA modalities respectively and averaged
the obtained results. For completeness, we report results obtained
by the original MCG [166] without any retraining on NYUD. The
best result is obtained by the variant of COB trained on both RGB
and HHA modalities. Compared to its RGB-only counterpart, the
particular model achieves higher accuracy, suggesting that the depth
embeddings are useful cues to discern contours when RGB modality
alone is unable to do so. It is noteworthy that the post-processing step
(orientations and UCMs) further boosts the performance of COB. For
example, performance increases from 0.745 (ResNet50-RGB-HHA) to
0.784 (COB-RGB-HHA) by plugging in the orientations and the UCM
pipeline to the trained ResNet50 architecture. We also report the results
of the model trained on PASCAL Context (COB-PC) and operating
only on RGB data, showing that it performs fairly well without any
retraining on the NYUD dataset.

2.5.6 Efficiency Analysis

Contour detection and image segmentation, as a preprocessing step
towards high-level applications, need to be computationally efficient.
The previous state-of-the-art in hierarchical image segmentation [166,
11] was of limited use in practice due to its computational load.

As a core in our system, the forward pass of our network to com-
pute the contour strength and 8 orientations takes 0.28 seconds on a
NVidia Titan X GPU. Table 2.3 shows the timing comparison between
the full system COB (Ours) and some related baselines on PASCAL
Context. We divide the timing into different relevant parts, namely, the
contour detection step, the Oriented Watershed Transform (OWT) and
Ultrametric Contour Map (UCM) computation, and the globalization
(normalized cuts) step.

Column (1) shows the timing for the original MCG [166], which uses
Structured Edges (SE) [48]. As a first baseline, Column (2) displays
the timing of MCG if we naively substitute SE by HED [219] at the
three scales (running on a GPU). By applying the sparse boundaries
representation we reduce the UCM and OWT time from 11.58 to 1.63

seconds (Column (3)). Our final technique COB, in which we remove
the globalization step, computes the three scales in one pass and add
contour orientations, takes 0.79 seconds in mean. Overall, comparing to
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Steps (1) MCG [166] (2) MCG-HED (3) Fast UCMs (4) COB (Ours)

Contours 3.08 0.39* 0.39* 0.28*
OWT, UCM 11.33 11.58 1.63 0.51

Globalize 9.96 9.97 9.92 0.00

Total Time 24.37 21.94 11.94 0.79

Table 2.3: Timing experiments for COB: Comparing our approach to
different baselines. Times computed using a GPU are marked
with an asterisk. Numbers are in seconds.

previous state-of-the-art, we get a significant improvement at a fraction
of the computation time (24.37 to 0.79 seconds).

2.6 experiments on high-level applications

This section is dedicated to present the interaction of COB boundaries
and segments with higher vision tasks. In Section 2.6.1 we evaluate
COB as object proposals by plugging in the detected UCMs into the
combinatorial goruping pipeline of MCG [166]. In Section 2.6.2 we study
the interplay of our boundary detector with semantic contours and
semantic segmentation by combining COB with Dilated Network [227]
and PSPNet [233], and in Section 2.6.3 we couple the COB proposals
with the Fast-RCNN [61] pipeline for object detection. In all cases, we
show that COB co-operates well with existing approaches by improving
their performance.

2.6.1 Object Proposals

Object proposals are an integral part of current object detection and se-
mantic segmentation pipelines [62, 61, 178], as they provide a reduced
search space on locations, scales, and shapes over the image. This
section evaluates COB as a segmented and bounding box proposal tech-
nique, when using our high-quality region hierarchies in conjunction
with the combinatorial grouping framework of MCG [166]. In terms
of segmented object proposals, we compare against the most recent
techniques SharpMask [165], DeepMask [164], POISE [81], MCG and
SCG [166], LPO [102], GOP [101], SeSe [209], GLS [173], and RIGOR [82].
In terms of bounding box proposals, we compare also against Sharp-
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Figure 2.14: Segmented object proposals evaluation in PASCAL Seg-
mentation val and MS-COCO val: Dashed lines refer to
methods that do not provide a ranked set of proposals, but
they need to be re-parameterized.
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Figure 2.15: Bounding-box object proposals evaluation on PASCAL
Segmentation val and MS-COCO val: Note that COB is
designed to detect segmented object proposals and not
bounding-box proposals.
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Mask [165], DeepMask [164], EB [239], RPN [178] MCG and SCG [166],
LPO [102], BING [37], SeSe [209], GLS [173], RIGOR [82], Obj [6], and
RP [135]. Recent thorough comparisons of object proposal generation
methods can be found in [169, 76].

We perform experiments on the PASCAL 2012 Segmentation dataset [54]
and on the bigger and more challenging MS-COCO [122] (val2014 set).
The hierarchies and combinatorial grouping are trained on PASCAL
Context. To assess the generalization capability, we evaluate on MS-
COCO, which contains a large number of previously unseen categories,
without further retraining.

Figure 2.14 shows the average recall [76] with respect to the number
of object proposals. In PASCAL VOC’12 Segmentation, the absolute
gap of improvement of COB is at least of +13% with the second-best
technique, and consistent in all the range of number of proposals. In
MS-COCO, even though we did not train on any MS-COCO image,
COB reaches competitive results for the task, with only very recent
techniques [165, 164] reaching higher Average Recall when evaluating
a low number of proposals. This shows that our contours, regions, and
proposals are properly learning a generic concept of object rather than
some specific categories.

Figure 2.15 shows the evaluation in terms of bounding box object
proposals. COB is less competitive in terms of box proposals, however
the algorithm was not specifically designed for detecting bounding
boxes. We also show the comparison to RPN [178], which is trained on
VOC’07, and thus does not generalize well in the classes of COCO.

2.6.2 Semantic Boundaries and Semantic Segmentation

The task of Semantic Boundaries, introduced by [69], requires not only
detecting the boundaries, but also associating a semantic class to them.
It can be thought as a combination of Boundary Detection and Semantic
Segmentation, where except for the binary information of boundaries,
one needs to label each of the detected pixels with the corresponding
semantic class. The common approach to this task is to separately
approach semantic segmentation and contour detection, and fuse the
results of the two tasks [69, 18, 19]. Hariharan et al [69] tackled the
task with generic object detectors and bottom up contours. Bertasius
et al. [18, 19] show that results can be significantly improved when
using deep-learning based semantic segmenters and contour detectors.
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Technique Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Mean maxF

COB-dil 84.2 72.3 81.0 64.2 68.8 81.7 71.5 79.4 55.2 79.1 40.8 79.9 80.4 75.6 77.3 54.4 82.8 51.7 72.1 62.4 70.7
DilatedConv [227] 83.7 71.8 78.8 65.5 66.3 82.6 73.0 77.3 47.3 76.8 37.2 78.4 79.4 75.2 73.8 46.2 79.5 46.6 76.4 63.8 69.0
BNF [19] 76.7 60.5 75.9 60.7 63.1 68.4 62.0 74.3 54.1 76.0 42.9 71.9 76.1 68.3 70.5 53.7 79.6 51.9 60.7 60.9 65.4
HFL [18] 73.6 61.1 74.2 57.0 58.7 70.2 60.8 71.8 46.3 72.1 36.0 70.9 72.9 67.5 69.9 44.1 73.1 42.2 62.2 60.4 62.2
[90] 65.9 54.1 63.6 47.9 47.0 60.4 50.9 56.5 40.4 56.0 30.0 57.5 58.0 57.4 59.5 39.0 64.2 35.4 51.0 42.4 51.9
[69] 41.5 46.7 15.6 17.1 36.5 42.7 40.3 22.6 18.8 27.0 12.5 18.2 35.4 29.4 48.1 13.8 26.9 11.0 22.0 31.3 27.9

Table 2.4: SBD val evaluation: Semantic contours results: maximal Fb
per class and mean maximal Fb is reported for all methods.

Technique Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Mean AP

COB-dil 85.7 69.3 77.6 59.7 64.1 82.9 69.7 80.5 41.8 79.4 26.0 78.9 81.5 74.7 77.3 43.8 82.8 39.3 73.3 56.4 67.2
BNF [19] 75.9 46.0 70.5 48.9 48.6 65.3 53.5 65.2 38.2 69.7 20.9 62.3 72.2 56.6 63.3 38.5 75.7 31.4 45.6 48.1 54.8
HFL [18] 71.3 54.9 68.8 45.6 48.3 70.9 56.5 65.6 29.0 65.8 17.6 64.3 68.3 64.0 65.6 28.8 66.5 25.8 59.5 49.8 54.3
[90] 67.1 50.5 62.2 42.1 38.9 57.8 47.7 53.7 32.1 52.3 17.5 53.1 56.0 53.2 57.7 29.4 62.2 24.0 46.2 32.8 46.8
[69] 38.4 38.9 8.6 9.3 23.0 37.1 33.6 18.4 11.5 16.0 5.1 12.2 29.0 21.3 46.9 7.2 15.8 5.6 14.4 21.4 20.7

Table 2.5: SBD val evaluation: Semantic contours results: Average
Precision (AP) per class and mean AP (mAP) is reported for
all methods.

Technique BG Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Mean

COB-dil 93.5 90.3 39.7 83.2 66.2 68.9 92.6 84.6 89.2 36.9 84.7 53.1 82.9 87.0 83.1 86.3 54.7 84.8 45.7 84.6 68.9 74.3
DilatedConv [227] 92.8 87.1 39.2 79.6 65.9 66.3 90.0 82.5 85.3 36.2 81.7 51.7 78.1 83.8 80.2 83.4 50.5 82.6 43.1 83.8 65.3 71.9

COB-PSP 95.4 90.9 44.8 90.2 76.1 84.1 96.1 92.1 95.3 45.6 95.4 59.9 92.0 93.2 90.8 90.1 68.0 93.4 50.2 93.3 79.8 81.7
PSPNet [233] 95.3 90.7 44.4 90.2 74.8 83.4 96.3 92.0 95.0 46.4 94.6 59.1 91.9 92.5 91.0 89.9 66.0 91.6 50.2 93.0 80.0 81.3

Table 2.6: PASCAL VOC Segmentation val evaluation: Effect of COB
on Semantic Segmentation. Per-class IoU and mean IoU are
reported.

Kokkinos [97] approaches the task with fully-convolutional networks
trained end to end, although the results do not reach the current state
of the art.

We also follow the most common approach of mixing the two tasks.
We couple the COB boundaries with Semantic Segmentation results by
dilated convolutions [227]. Specifically, we mask the boundaries with
Semantic Segmentation results, with a tolerance of 0.02 of the image
diagonal.

Technique Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Mean

COB 69.5 76.8 69.7 53.3 44.6 80.5 81.3 83.1 45.3 74.2 69.4 80.1 84.2 76.7 72.8 35.9 67.1 68.4 75.1 65.4 68.7
SeSe 76.0 76.8 65.3 54.6 38.0 76.5 78.2 81.6 40.1 74.1 66.5 78.9 81.8 74.5 66.2 32.9 65.6 67.7 73.4 66.8 66.8

Table 2.7: VOC 2007 test evaluation: Object Detection performance
(mAP) of Fast-RCNN [61], using object proposals from [209]
(original) or COB.
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We report results on the SBD [69] database, for semantic boundary
detection, by using the standard benchmark. Tables 2.4 and 2.5 compare
the results among various methods, in both metrics used in the bench-
mark (mean maximal F-measure and Average Precision) for all classes.
The combination of COB with [227], denoted with COB-dil, achieves
state-of-the-art results in both metrics. For fair comparison, we also
include the results obtained by evaluating the semantic segmentation
results obtained by [227] directly as contours. We show that COB fairly
improves the result.

Having explored the performance of COB combined with the Dilated
Convolution network on Semantic Boundaries, it is interesting to inves-
tigate the dual task: the effects of COB in semantic segmentation. We
treat the COB UCMs as superpixels, by applying a low value threshold
(0.1) to the hierarchy, which results in high recall. We then snap the
semantic segmentation results to the superpixels by majority voting
of the regions, i.e superpixels that overlap more than 50% with the
semantic class, are assigned the corresponding label. Table 2.6 reports
the effects of such snapping on Semantic Segmentation, on the valida-
tion split of PASCAL VOC Segmentation dataset. In addition to the
Dilated network, we also explored the most recent PSPNet [233] as the
base semantic segmenter. Results improve consistently almost for all
the classes in both cases, indicating that COB superpixels are further
refining the semantic segmentation results on boundary locations. We
observe a more moderate improvement in the PSPNet results, mainly
because of the reduced false detections. We have excluded all images
of VOC Segmentation val set for training the COB model.

In Figure 2.16 we present some qualitative results. Snapping to COB
superpixels improves mainly on boundary locations, as well as on noisy
semantic segmentation detections in places where COB superpixels are
not present.

2.6.3 COB Object Proposals for Object Detection

Object Proposals have been extensively used to facilitate object detec-
tion [62, 61, 178]. Most common pipelines use object proposals in the
form of a bounding box to regress a class score and a refined prediction
of the bounding box locations. Even though our approach provides
segmented object proposals from a hierarchy of regions, it is possible
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Figure 2.16: Qualitative results for Semantic Segmentation: Row 1:
original images, Row 2: Dilated Convolution Network,
Row 3: Dilated Network with COB superpixels.

to study their effect on common object detection pipelines by simply
extracting the bounding box around them.

We evaluate the bounding box proposals generated by COB by feed-
ing them into the Fast-RCNN [61] pipeline for Object Detection. The
original approach uses the VGG network [199] together with the box
proposals generated by the Selective Search [209] algorithm to predict
class probability and refine the localization for each of them. The fi-
nal detection performance is evaluated by performing non-maximum
suppression on the detections.

Experiments are performed on the VOC’07 detection database. The
database consists of 5011 training, and we report the performance on its
4952 testing images. In our experiments, we change the box proposals
of Selective Search, to the ones generated by COB. We keep all the
hyper-parameters of the original approach unchanged, both at training
and test times. Table 2.7 quantitatively evaluates the effects of COB
proposals in performance. We observe improvements in object detection
performance (mean Average Precision - mAP), which further proves
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the high quality of the proposals generated by COB. We would like to
emphasize that the latest developments on Object Detection use joint
training of bounding box proposals and object class scores [178, 124,
176, 45], which together with training on external data achieves much
higher results. Instead, we focus on proving the high quality of COB
proposals compared to other object proposal techniques.

2.7 conclusions

In this chapter, we have developed an approach to detect contours at
multiple scales, together with their orientations, in a single forward
pass of a convolutional neural network. We provide a fast framework
for generating region hierarchies by efficiently combining multiscale
oriented contour detections, thanks to a new sparse boundary represen-
tation. We shift from the BSDS to PASCAL to unwind all the potential
of data-hungry methods such as CNNs and by observing that BSDS is
close to saturation.

Our technique achieves state-of-the-art performance by a significant
margin for contour detection, the estimation of their orientation, and
generic (RGB and RGB-D) image segmentation. We show that our
architecture is modular by using two different CNN base architectures,
which suggests that it will be able to transfer further improvements
in CNN base architectures to perceptual grouping. We also show
that our method does not require globalization, which was a speed
bottleneck in previous approaches. The generalization of COBwas
further demonstrated when applied to high-level vision tasks (object
proposals, object detection, and semantic contours and segmentation)
in combination with recent pipelines, where the results are improved
in all cases.
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3
D E E P E X T R E M E C U T: F R O M E X T R E M E P O I N T S T O
O B J E C T S E G M E N TAT I O N

This chapter explores the use of extreme points in an object (left-most,
right-most, top, bottom pixels) as input to obtain precise object segmen-
tation for images and videos. We do so by adding an extra channel to
the image in the input of a convolutional neural network (CNN), which
contains a Gaussian centered in each of the extreme points. The CNN
learns to transform this information into a segmentation of an object
that matches those extreme points.

We demonstrate the usefulness of this approach for guided segmenta-
tion (grabcut-style), interactive segmentation, video object segmentation,
and dense segmentation annotation. We show that we obtain the most
precise results to date, also with less user input, in an extensive and
varied selection of benchmarks and datasets.

3.1 introduction

Deep learning techniques have revolutionized the field of computer vi-
sion since their explosive appearance in the ImageNet competition [188],
where the task is to classify images into predefined categories, that is,
algorithms produce one label for each input image. Image and video
segmentation, on the other hand, generate dense predictions where
each pixel receives a (potentially different) output classification. Deep
learning algorithms, especially Convolutional Neural Networks (CNNs),
were adapted to this scenario by removing the final fully connected
layers to produce dense predictions, among other modifications.

Supervised techniques, those that train from manually-annotated
results, are currently the best performing in many public benchmarks
and challenges [233, 33, 73]. In the case of image and video segmen-
tation, the supervision is in the form of dense annotations, i.eeach
pixel has to be annotated in an expensive and cumbersome process.
Weakly-supervised techniques, which train from incomplete but easier-
to-obtain annotations, are still significantly behind the state of the art.
Semi-automatic techniques, which need a human in the loop to pro-
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Figure 3.1: Example results of DEXTR: The user provides the extreme
clicks for an object, and the CNN produces the segmented
masks.

duce results, are another way of circumventing the expensive training
annotations but need interaction at test time, which usually comes in
the form of a bounding box [44, 89] or scribbles [119] around the object
of interest. How to incorporate this information at test time without
introducing unacceptable lag, is also a challenge.

This paper tackles all these scenarios in a unified way and shows
state-of-the-art results in all of them in a variety of benchmarks and
setups. We present Deep Extreme Cut (DEXTR), that obtains an object
segmentation from its four extreme points [156]: the left-most, right-
most, top, and bottom pixels. Figure 3.1 shows an example result of
our technique along with the input points provided.
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In the context of semi-automatic object segmentation, we show that
information from extreme clicking results in more accurate segmenta-
tions than the ones obtained from bounding-boxes (PASCAL, COCO,
Grabcut) in a Grabcut-like formulation. DEXTR outperforms other
methods using extreme points or object proposals (PASCAL), and pro-
vides a better input to video object segmentation (DAVIS 2016, DAVIS
2017). DEXTR can also incorporate more points beyond the extreme
ones, which further refines the quality (PASCAL).

DEXTR can also be used to obtain dense annotations to train super-
vised techniques. We show that we obtain very accurate annotations
with respect to the ground truth, but more importantly, that algorithms
trained on the annotations obtained by our algorithm perform as good
as when trained from the ground-truth ones. If we add the cost to
obtain such annotations into the equation, then training using DEXTR
is significantly more efficient than training from the ground truth for a
given target quality.

We perform an extensive and comprehensive set of experiments on
COCO, PASCAL, Grabcut, DAVIS 2016, and DAVIS 2017, to demon-
strate the effectiveness of our approach.

3.2 related work

Weakly Supervised Signals for Segmentation: Numerous alternatives
to expensive pixel-level segmentation have been proposed and used
in the literature. Image-level labels [159], noisy web labels [4, 87] and
scribble-level labels [119] are some of the supervisory signal that have
been used to guide segmentation methods. Closer to our approach, [15]
employs point-level supervision in the form of a single click to train
a CNN for semantic segmentation and [157] uses central points of an
imaginary bounding box to weakly supervise object detection. Also
related to our approach, [44, 89] train semantic segmentation methods
from box supervision. Recently, Papadopoulos et al. proposed a novel
method for annotating objects by extreme clicks [156]. They show that
extreme clicks provide additional information to a bounding box, which
they use to enhance GrabCut-like object segmentation from bounding
boxes. Different than these approaches, we use extreme clicking as a
form of guidance for deep architectures, and show how this additional
information can be used to further boost accuracy of segmentation
networks, and help various applications.
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Instance Segmentation: Several works have tackled the task of
grouping pixels by object instances. Popular grouping methods provide
instance segmentation in the form of automatically segmented object
proposals [77, 166]. Other variants provide instance-level segmentation
from a weak guiding signal in the form of a bounding box [187]. Accu-
racy for both groups of methods has increased by recent approaches
that employ deep architectures trained on large datasets with strong
supervisory signals, to learn how to produce class-agnostic masks from
patches [164, 165], or from bounding boxes [223]. Our approach relates
to the second group, since we utilize information from extreme clicks
to group pixels of the same instance, with higher accuracy.

Interactive Segmentation from points: Interactive segmentation
methods have been proposed in order to reduce annotation time. In this
context, the user is asked to gradually refine a method by providing ad-
ditional labels to the data. Grabcut [187] is one of the pioneering works
for the task, segmenting from bounding boxes by gradually updating an
appearance model. Our method relates with interactive segmentation
using points as the supervisory signal. Click Carving [85] interactively
updates the result of video object segmentation by user-defined clicks.
Recent methods use these ideas in the pipeline of deep architectures.
iFCN [224] guides a CNN from positive and negative points acquired
from the ground-truth masks. RIS-Net [68] build on iFCN to improve
the result by adding local context. Our method significantly improves
the results by using just 4 class-agnostic points as the supervisory signal:
the extreme points.

Current lines of work: After the published version of DEXTR, there
have been numerous works in the related fields. Mahadevan et al. [132]
iteratively train on the erroneous areas for interactive object segmenta-
tion. Benenson et al [16] investigate interactive methods for large-scale
object segmentation. Among the methods that directly propose im-
provements on DEXTR, [213] iteratively refine the output of DEXTR
by using ideas from level set evolution, trainable by back-propagation.
Agustsson et al [3] build on top of DEXTR and propose a method for
interactively annotate for panoptic segmentation, i.e simultaneously
tackle semantic segmentation of background classes and semantic in-
stance segmentation of foreground objects [92]. In a separate line of
work, [29] and [2] predict the polygon vertices of an object given its
bounding box. Oh et al. [155] use DEXTR to initialize their video object
segmentation pipeline, and propose a method that is fast and very
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Class-agnostic Instance Segmentation Video Object Segmentation

Annotation Interactive Object Segmentation

Figure 3.2: Architecture of DEXTR: Both the RGB image and the la-
beled extreme points are processed by the CNN to produce
the segmented mask. The applicability of this method is
illustrated for various tasks: Instance, Semantic, Video, and
Interactive segmentation.

accurate towards practical video object segmentation for the first time.
Zhou et al. [238] group extreme points for object detection, and proceed
to semantic instance segmentation using DEXTR.

3.3 method

3.3.1 Extreme points

One of the most common ways to perform weakly supervised segmen-
tation is drawing a bounding box around the object of interest [22, 216,
187, 110]. However, in order to draw the corners of a bounding box,
the user has to click points outside the object, drag the box diagonally,
and adjust it several times to obtain a tight, accurate bounding box.
This process is cognitively demanding, with increased error rates and
labeling times [156].

Recently, Papadopoulos et al. [156] have shown a much more efficient
way of obtaining a bounding box using extreme clicks, spending on
average 7.2 seconds instead of 34.5 seconds required for drawing a
bounding box around an object [201]. They show that extreme clicking
leads to high quality bounding boxes that are on par with the ones
obtained by traditional methods. These extreme points belong to the
top, bottom, left-most and right-most parts of the object. Extreme-
clicking annotations by definition provide more information than a
bounding box; they contain four points that are on the boundary of
the object, from which one can easily obtain the bounding-box. We
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use extreme points for object segmentation leveraging their two main
outcomes: the points and their inferred bounding box.

3.3.2 Segmentation from Extreme Points

The overview of our method is shown in Figure 3.2. The annotated
extreme points are given as a guiding signal to the input of the network.
To this end, we create a heatmap with activations in the regions of
extreme points. We center a 2D Gaussian around each of the points, in
order to create a single heatmap. The heatmap is concatenated with
the RGB channels of the input image, to form a 4-channel input for the
CNN. In order to focus on the object of interest, the input is cropped
by the bounding box, formed from the extreme point annotations. To
include context on the resulting crop, we relax the tight bounding box
by several pixels. After the pre-processing step that comes exclusively
from the extreme clicks, the input consists of an RGB crop including an
object, plus its extreme points.

We choose ResNet-101 [74] as the backbone of our architecture, as it
has been proven successful in a variety of segmentation methods [31,
73]. We remove the fully connected layers as well as the max pooling
layers in the last two stages to preserve acceptable output resolution for
dense prediction, and we introduce atrous convolutions in the last two
stages to maintain the same receptive field. After the last ResNet-101
stage, we introduce a pyramid scene parsing module [233] to aggregate
global context to the final feature map. Initializing the weights of the
network from pre-training on ImageNet has been proven beneficial
for various tasks [126, 220, 73]. For most experiments, we use the
provided Deeplab-v2 model pre-trained on ImageNet, and fine-tuned
on PASCAL for semantic segmentation.

The output of the CNN is a probability map representing whether a
pixel belongs to the object that we want to segment or not. The CNN
is trained to minimize the standard cross entropy loss, which takes
into account that different classes occur with different frequency in a
dataset:

L = ∑
j∈Y

wyj C
(
yj, ŷj

)
, j ∈ 1, ..., |Y| (3.1)

where wyj depends on the label yj of pixel j. In our case we define wyj

with yj ∈ {0, 1} as the inverse normalized frequency of labels inside the
minibatch. C(.) indicates the standard cross-entropy loss between the
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label and the prediction ŷj. The balanced loss has proven to perform
very well in boundary detection [220, 139], where the majority of the
samples belong to the background class. The same class-balancing
was used in Eq. 2.1 of Chapter 2 for COB. We note that our method
is trained from strong mask-level supervision, on publicly available
datasets, using the extreme points as a guiding signal to the network.

In order to segment an object, our method uses a object-centered
crop, therefore there is a much higher number of samples belonging to
the foreground than to the background and the use of a balanced loss
proves to be beneficial.

Alternatives for each of the components used in our final model have
been studied in an ablation analysis, and a detailed comparison can be
found in Section 3.4.2.

3.3.3 Use cases for DEXTR

Class-agnostic Instance Segmentation: One application of DEXTR is
class-agnostic instance segmentation. In this task, we click on the ex-
treme points of an object in an image, and we obtain a mask prediction
for it. The selected object can be of any class, as our method is class
agnostic.

In Section 3.4.3, we compare our method with the state of the art
in two different datasets, PASCAL and Grabcut, where we improve
current results. We also analyze the generalization of our method to
other datasets and to unseen categories. We conclude positive results
in both experiments: the performance drop for testing on a different
dataset than the one used for training is very small and the result
achieved is the same whether the class has been seen during training
or not.

Annotation: The common annotation pipeline for segmentation can
also be assisted by DEXTR. In this framework, instead of detailed poly-
gon labels, the workload of the annotator is reduced to only providing
the extreme points of an object, and DEXTR produces the desired seg-
mentation. In this pipeline, the labeling cost is reduced by a factor of
10 (from 79 seconds needed for a mask [122], to 7.2 seconds needed for
the extreme clicks [156]).

In Section 3.4.4, the quality of the produced masks are validated
when used to train a semantic segmentation algorithm. We show that
our method produces very accurate masks and the results trained on
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them are on par with those trained on the ground-truth annotations in
terms of quality, with much less annotation budget.

Video Object Segmentation: DEXTR can also improve the pipeline
of video object segmentation. We focus on the semi-supervised setting
where methods use one or more masks as inputs to produce the seg-
mentation of the whole video. Our aim is to replace the costly per pixel
annotation masks by the masks produced by our algorithm after the
user has selected the extreme points of a certain object, and re-train
strongly supervised state-of-the-art video segmentation architectures.

In Section 3.4.5, we provide results on two different dataset: DAVIS-
2016 and DAVIS-2017. We conclude that state-of-the-art results can be
achieved reducing the annotation time by a factor of 5. Moreover, for
almost any specific annotation budget, better results can be obtained
using a higher number of masks produced by our algorithm rather than
expensive per-pixel annotated masks. Out efforts have been useful to
the work of [155], where the authors initialize their video segmentation
pipeline from predictions obtained by DEXTR.

Interactive Object Segmentation: The pipeline of DEXTR can also
be used in the frame of interactive segmentation from points [224, 223].
We work on the case where the user labels the extreme points of an
object, but is nevertheless not satisfied with the obtained results. The
natural thing to do in such case is to annotate an extra point (not
extreme) in the region that segmentation fails, and expect for a refined
result. Given the nature of extreme points, we expect that the extra
point also lies in the boundary of the object.

To simulate such behavior, we first train DEXTR on a first split of
a training set of images, using the 4 extreme points as input. For the
extra point, we infer on an image of the second split of the training set,
and compute the accuracy of its segmentation. If the segmentation is
accurate (eg. IoU ≥ 0.8), the image is excluded from further processing.
In the opposite case (IoU < 0.8), we select a fifth point in the erroneous
area. To simulate human behavior, we perturbate its location and
we train the network with 5 points as input. Results presented in
Section 3.4.6 indicate that it is possible to recover performance on the
difficult examples, by using such interactive user input.
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3.4 experimental validation

Our method is extensively validated on five publicly available databases:
PASCAL [54], COCO [122], DAVIS 2016 [162], DAVIS 2017 [168], and
Grabcut [187], for various experimental setups that show its applicabil-
ity and generalization capabilities. We use DEXTR trained on PASCAL
(augmented by the labels of SBD [69] following the common practice
- 10582 images), unless indicated differently. Some implementation
details are given in Section 3.4.1. We then perform an ablation study
to separately validate all components of our method in Section 3.4.2.
Class-agnostic instance segmentation experiments from extreme points
are presented in Section 3.4.3, whereas Sections 3.4.4 and 3.4.5 are
dedicated to how DEXTR contributes to segmentation annotation and
video object segmentation pipelines, respectively. Section 3.4.6 presents
our method as an interactive segmenter from points.

3.4.1 Implementation Details

Simulated Extreme Points: In [156], extreme points in PASCAL were
obtained by crowd-sourcing. We used their collected extreme points
when experimenting on the same dataset, and collected new extreme
points by humans in DAVIS 2016. To experiment on COCO, on which
it was not feasible to collect extreme points by human annotators, we
simulate them by taking the extreme points of the ground-truth masks
jittered randomly by up to 10 pixels.

Training and testing details: DEXTR is trained on PASCAL 2012

Segmentation for 100 epochs or on COCO 2014 training set for 10

epochs. The learning rate is set to 10−8, with momentum of 0.9 and
weight decay of 5 ∗ 10−4. A mini-batch of 5 objects is used for PASCAL,
whereas for COCO, due to the large size of the database, we train on
4 GPUs with an effective batch size of 20. Training on PASCAL takes
approximately 20 hours on a Nvidia Titan-X GPU, and 5 days on COCO.
Testing the network is fast, requiring only 80 milliseconds. More details
are provided in our open-source repository.
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3.4.2 Ablation Study

The following sections show a number of ablation experiments in
the context of class-agnostic instance segmentation to quantify the
importance of each of the components of our algorithm and to justify
various design choices. Table 3.2 summarizes these results. We use
PASCAL VOC 2012 val set for the evaluation.

Architecture: We use ResNet-101 as the backbone architecture, and
compare two different alternatives. The first one is a straightforward
fully convolutional architecture (Deeplab-v2 [31]) where the fully con-
nected and the last two max pooling layers are removed, and the last
two stages are substituted with dilated (or atrous) convolutions. This
keeps the size of the prediction in reasonable limits (8× lower than the
input). We also tested a region-based architecture, similar to Mask R-
CNN [73], with a re-implementation of the ResNet-101-C4 variant [73],
which uses the fifth stage (C5) for regressing a mask from the Region
of Interest (RoI), together with the re-implementation of the RoI-Align
layer. For more details please refer to [73]. In the first architecture,
the input is a patch around the object of interest, whereas in the latter
the input is the full image, and cropping is applied at the RoI-Align
stage. Deeplab-v2 performs +3.9% better. We conclude that the output
resolution of ResNet-101-C4 (28×28) is inadequate for the level of detail
that we target.

Bounding boxes vs. extreme points: We study the performance of
Deeplab-v2 as a foreground-background classifier given a bounding
box compared to the extreme points. In the first case, the input of
the network is the cropped image around the bounding box plus a
margin of 50 pixels to include some context. In the second case, the
extreme points are fed together in a fourth channel of the input to
guide the segmentation. Including extreme points to the input increases
performance by +3.1%, which suggest that they are a source of very
valuable information that the network uses additionally to guide its
output.

Loss: For the task of class-agnostic instance segmentation, we com-
pare two binary losses, i.e. the standard cross-entropy and a class-
balanced version of it, where the loss for each class in the batch is
weighted by its inverse frequency. Class-balancing the loss gives more
importance to the less frequent classes, and has been successful in
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various tasks [220, 139, 136]. DEXTR also performs better when the loss
is balanced, leading to a performance boost of +3.3%.

Full image vs. crops: Having the extreme points annotated allows for
focusing on specific regions in an image, cropped by the limits specified
by them. In this experiment, we compare how beneficial it is to focus on
the region of interest, rather than processing the entire image. To this
end, we crop the region surrounded by the extreme points, relaxing it
by 50 pixel for increased context and compare it against the full image
case. We notice that cropping increases performance by +7.9%, and is
especially beneficial for the small objects of the database. This could
be explained by the fact that cropping eliminates the scale variation
on the input. Similar findings have been reported for video object
segmentation by [112].

Atrous spatial pyramid (ASPP) vs. pyramid scene parsing (PSP)
module: Pyramid Scene Parsing Network [233] steps on the Deeplab-
v2 [31] architecture to further improve results on semantic segmentation.
Their main contribution was a global context module (PSP) that employs
global features together with the local features for dense prediction. We
compare the two network heads, the original ASPP [31], and the recent
PSP module [233] for our task. The increased results of the PSP module
(+2.3%) indicate that the PSP module builds a global context that is also
useful in our case.

Manual vs. simulated extreme points: In this section we analyze
the differences between the results obtained by DEXTR when we input
either human-provided extreme points or our simulated ones, to check
that the conclusions we draw from the simulations will still be valid in a
realistic use case with human annotators. We do so in the two datasets
where we have real extreme points from humans. The first one is a
certain subset of PASCAL 2012 Segmentation and SBD (5623 objects)
with extreme points from [156], which we refer to as PASCALEXT and
DAVIS 2016, for which we crowdsourced the extreme point annotations.
The annotation time for the latter (average of all 1376 frames of the
validation set) was 7.5 seconds per frame, in line with [156] (7.2 s.
per image). Table 3.1 shows that the results are indeed comparable
when using both type of inputs. The remainder of the chapter uses the
simulated extreme points except when otherwise specified.

Distance-map vs. fixed points: Recent works [224, 223, 68] that focus
on segmentation from (not-extreme) points use the distance transform
of positive and negative annotations as an input to the network, in
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Method PASCALEXT DAVIS 2016

Manual extreme points 80.1 80.9
Simulated extreme points 85.1 79.5

Table 3.1: Manual vs. simulated extreme points: Intersection over
Union (IoU) of the DEXTR results when using manual or
simulated extreme points as input.

order to guide the segmentation. We compare with their approach
by substituting the fixed Gaussians to the distance transform of the
extreme points. We notice a performance drop of -1.3%, suggesting that
using fixed Gaussians centered on the points is a better representation
when coupled with extreme points. In Section 3.4.3 we compare to
such approaches, showing that extreme points provide a much richer
guidance than arbitrary points on the foreground and the background
of an object.

Summary: Table 3.2 summarizes the main ablated results that have
been discussed above, analyzing all components.

Component #1 Component #2 Gain in IoU

Region-based Deeplab-v2 +3.9%
Bounding Boxes Extreme Points +3.1%
Cross Entropy Balanced BCE +3.3%

Full Image Crop on Object +7.9%
ASPP PSP +2.3%

Fixed Points Distance Map −1.3%

Table 3.2: Ablation study for DEXTR: Comparative evaluation between
different choices in various components of our system. Mean
IoU over all objets in PASCAL VOC 2012 val set.

Table 3.3 illustrates the building blocks that lead to the best per-
forming variant for our method. All in all, we start by a Deeplab-v2

base model working on bounding boxes. We add the PSP module
(+2.3%), the extreme points in the input of the network (+3.1%), and
more annotated data from SBD (+1%) to reach maximum accuracy.
The improvement comes mostly because of the guidance from extreme
points, which highlights their importance for the task.
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Figure 3.3: Qualitative results by DEXTR in PASCAL: Each instance
with the simulated extreme points used as input and the
resulting mask overlayed. The bottom row shows results on
PASCAL Context stuff categories.

3.4.3 Class-agnostic Instance Segmentation

Comparison to the State of the Art in PASCAL: We compare our
method against state-of-the-art class-agnostic instance segmentation
methods in Table 3.4. DEXTR gets a boost of +6.5% with respect to
using the grabcut-based method of [156] from extreme points.

We then compare to two other baselines using SharpMask [165], the
state-of-the-art object proposal technique. In the first row, we evaluate
the proposal (out of 1000) whose bounding box best overlaps with the
ground-truth bounding box, mimicking a naive algorithm to segment
boxes from proposals. The second row shows the upper bound of

Variant IoU (%) Gain

Full Image (Deeplab-v2 + PSP + Extreme Points) 82.6

Crop on Object (Deeplab-v2) 85.1 +2.5%
+ PSP 87.4 +2.3%
+ Extreme Points 90.5 +3.1%
+ SBD data (Ours) 91.5 +1.0%

Table 3.3: Best components for DEXTR: Building performance in PAS-
CAL VOC 2012 val set.
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Method IoU

Sharpmask [165] from bounding box 69.3%
Sharpmask [165] upper bound 78.0%
[156] from extreme points 73.6%
Ours from extreme points 80.1%

Table 3.4: Comparison in PASCALEXT: IoU of our results against class-
agnostic instance segmentation methods, on the objects anno-
tated by [156] to be able to compare to them.

SharpMask, that is, the best proposal against the ground truth, selected
by an oracle. Both approaches are well below our result (-10.8% and
-2.1%). Figure 3.3 illustrates some results obtained by our method on
PASCAL.

Comparison to the State of the Art on the Grabcut dataset: We use
our best PASCAL model and we test it in the Grabcut dataset [187].
This dataset contains 50 images, each with one annotated object from
various categories, some of them not belonging to any of the PASCAL
ones (banana, scissors, kangaroo, etc.). The evaluation metric is the
error rate: the percentage of misclassified pixels within the bounding
boxes provided by [110]. Table 3.5 shows the results, where DEXTR
achieves 2.3% error rate, 1.1% below the runner up (or a 32% relative
improvement).

Method Error Rate (%)

GrabCut [187] 8.1
KernelCut [205] 7.1
OneCut [206] 6.7
[156] from extreme points 5.5
BoxPrior [110] 3.7
MILCut [216] 3.6
DeepGC [223] 3.4
Ours from extreme points 2.3

Table 3.5: Comparison in the Grabcut dataset: Error rates compared
to the state-of-the-art techniques.

Generalization to unseen categories and across datasets: Table 3.6
shows our results when trained on a certain dataset (first column),
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and tested in another one or certain categories (second column). In
order to make a fair comparison, all the models are pre-trained only on
ImageNet [188] for image labeling and trained on the specified dataset
for category-agnostic instance segmentation. The first two rows show
that our technique is indeed class agnostic, since the model trained on
PASCAL achieves roughly the same performance in COCO mini-val
(MVal) regardless of the categories tested. The remaining rows shows
that DEXTR also generalizes very well across datasets, since differences
are around only 2% of performance drop.

Train Test IoU

PASCAL COCO MVal w/o PASCAL classes 80.3%Unseen
categories PASCAL COCO MVal only PASCAL classes 79.9%

PASCAL COCO MVal 80.1%
COCO COCO MVal 82.1%

COCO PASCAL 87.8%
Dataset

generalization

PASCAL PASCAL 89.8%

Table 3.6: Generalization to unseen classes and across datasets: Inter-
section over union results of training in one setup and testing
on another one. MVal stands for mini-val.

Generalization to background (stuff) categories: In order to ver-
ify the performance of DEXTR in “background” classes, we trained a
model using the background labels of PASCAL Context [147] (road,
sky, sidewalk, building, wall, fence, grass, ground, water, floor, ceiling,
mountain, and tree). Qualitative results (Figure 3.3 last row) suggest
that our method generalizes to background classes as well. Quantita-
tively, we achieve a mIoU of 81.75% in PASCAL-Context validation set,
for the aforementioned classes.

3.4.4 Annotation

As seen in the previous section, DEXTR is able to generate high-quality
class-agnostic masks given only extreme points as input. The resulting
masks can in turn be used to train other deep architectures for other
tasks or datasets, that is, we use extreme points as a way to annotate a
new dataset with object segmentations. In this experiment we compare
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the results of a semantic segmentation algorithm trained on either
the ground-truth masks or those generated by DEXTR (we combine
all per-instance segmentations into a per-pixel semantic classification
result).

Specifically, we train DEXTR on COCO and use it to generate the
object masks of PASCAL train set, on which we train Deeplab-v2 [31],
and the PSP [233] head as the semantic segmentation network. To keep
training time manageable, we do not use multi-scale training/testing.
We evaluate the results on the PASCAL 2012 Segmentation val set, and
measure performance by the standard mIoU measure (IoU per-category
and averaged over categories).

Figure 3.4 shows the results with respect to the annotation budget
(left) and the number of images (right). For completeness, we also
report the results of PSPNet [233] ( ) by evaluating the model provided
by the authors (pre-trained on COCO, with multi-scale training and
testing). The results trained on DEXTR’s masks are significantly better
than those trained from the ground truth on the same budget (e.g. 70%
IoU at 7-minute annotation time vs. 46% with the same budget, or
1h10 instead of 7 minutes to reach the same 70% accuracy). DEXTR’s
annotations reach practically the same performance than ground truth
when given the same number of annotated images.
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Figure 3.4: Quality vs. annotation budget: mIoU for semantic segmen-
tation on PASCAL val set trained on our masks or the input,
as a function of annotation budget (left) and the number of
annotated images (right).
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3.4.5 Video Object Segmentation

We test DEXTR also for Video Object Segmentation on the DAVIS
datasets [162, 168]. We focus on the semi-supervised setting i.ethe
mask in one or more frames of the object that we want to segment is
given as input to the algorithm, and as before we will compare the
results obtained from the masks obtained by DEXTR or the ground truth
having a certain annotation budget. We assume that the annotation time
of the DAVIS masks is the same than that of COCO [122] (79 seconds
per instance), despite the former are significantly more accurate.

We use OSVOS [25], as a state-of-the-art semi-supervised video object
segmentation technique, which heavily relies on the appearance of
the annotated frame, and their code is publicly available. Figure 3.5
(left) shows the performance of OSVOS in DAVIS 2016 [162] trained
on the ground truth mask ( ) or the masks generated by DEXTR
from extreme points ( ). We reach the same performance as using
one ground-truth annotated mask with an annotation budget 5 times
smaller. Once we train with more than one ground-truth annotated
mask, however, even though we can generate roughly ten times more
masks, we cannot achieve the same accuracy. We believe this is so
because DAVIS 2016 sequences have more than one semantic instance
per mask while we only annotate a global set of extreme points, which
confuses DEXTR.

To corroborate this intuition, we perform the same experiment in
DAVIS 2017 [168], where almost every mask contains only one instance.
Figure 3.5 (right) shows that the performance gap with respect to using
the full ground-truth mask is much smaller than in DAVIS 2016. Overall,
we conclude that DEXTR is also very efficient to reduce annotation time
in video object segmentation.

3.4.6 Interactive Object Segmentation

DEXTR for Interactive Segmentation: We experiment on PASCAL
VOC 2012 segmentation for interactive object segmentation. We split
the training dataset into two equal splits. Initially, we train DEXTR on
the first split and test on the second. We then focus on the objects with
inaccurate segmentations, i.e. IoU<0.8, to simulate the ones on which a
human - unsatisfied with the result - would mark a fifth point. The extra
point would lie on the boundary of the erroneous area (false positive
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Figure 3.5: Quality vs. annotation budget in video object segmenta-
tion: OSVOS’ performance when trained from the masks of
DEXTR or the ground truth, on DAVIS 2016 (left) and on
DAVIS 2017 (right).

or false negative), which we simulate as the boundary point closest to
the highest error. From the perspective of network training, this can be
interpreted as Online Hard Example Mining (OHEM) [197], where one
only needs to back-propagate gradients for the training examples that
lead to the highest losses. Results are presented in Table 3.7.

Trained on 4 points 4 points-all 5 points 5 points + OHEM

IoU 59.6% 69.0% 69.2% 73.2%

Table 3.7: Interactive Object Segmentation Evaluation: Average IoU
on difficult cases of PASCAL VOC 2012 validation dataset.

We first select the objects that lead to poor performance (IoU<0.8)
when applying the network trained on the first split. We report the
average IoU on them (338 objects - 59.6%). Using the network trained
further on the hard examples, with a fifth boundary point, performance
increases to 73.2% (“5 points + OHEM”).

Since the increased performance is partially due to the increased
amount of training data (first split + hard examples of the second split),
we need to disentangle the two sources of performance gain. To this
end, we train DEXTR on 4 points, by appending the hard examples of
the second split to the first split of our training set (“4 points-all”).

Results suggest that DEXTR learns to handle more input information
given interactively in the form of boundary clicks, to improve results of
poorly segmented difficult examples (+4.2%). Interestingly, OHEM is a
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crucial component for improving performance: without it the network
does not focus on the difficult examples (only 11% of objects of the
second training split are hard examples), and fails to improve on the
erroneous region indicated by the fifth boundary point (“5 points”).

Comparison to the State of the Art: We compare against the state-
of-the-art in interactive segmentation by considering extreme points as
4 clicks. Table 3.8 shows the number of clicks that each method needs
to reach a certain performance, as well as their performance when the
input is 4 clicks, in PASCAL and the Grabcut dataset. DEXTR reaches
about 10% higher performance at 4 clicks than the best competing
method, and reaches 85% or 90% quality with fewer clicks. This further
demonstrates the enhanced performance of the CNN, when guided by
extreme points.

Number of Clicks IoU (%) @ 4 clicks
Method PASCAL@85% Grabcut@90% PASCAL Grabcut

GraphCut [22] > 20 > 20 41.1 59.3
Geodesic matting [12] > 20 > 20 45.9 55.6
Random walker [63] 16.1 15 55.1 56 .9
iFCN [224] 8.7 7.5 75.2 84.0
RIS-Net [68] 5.7 6.0 80.7 85.0
Ours 4.0 4.0 91.5 94.4

Table 3.8: PASCAL and Grabcut Dataset evaluation: Comparison to
interactive segmentation methods in terms of number of
clicks to reach a certain quality and in terms of quality at 4

clicks.

To the meticulous reader, please note that the difference in perfor-
mance of DEXTR between Table 3.8 (91.5%) and Table 3.1 (85.1%) comes
from the fact that the former is on PASCAL VOC 2012 segmentation
validation, so DEXTR is trained on SBD + PASCAL train, whereas the
latter is on a subset of PASCAL that overlaps with train (PASCALEXT),
so DEXTR is only trained on COCO.

3.5 conclusions

We have presented DEXTR, a CNN architecture for semi-automatic
segmentation that turns extreme clicking annotations into accurate
object masks; by having the four extreme locations represented as a
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heatmap extra input channel to the network. The applicability of our
method is illustrated in a series of experiments regarding semantic,
instance, video, and interactive segmentation in five different datasets;
obtaining state-of-the-art results in all scenarios. DEXTR can also
be used as an accurate and efficient mask annotation tool, reducing
labeling costs by a factor of 10.
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4
A U T O M AT I C T O O L L A N D M A R K D E T E C T I O N F O R
S T E R E O V I S I O N I N R O B O T- A S S I S T E D R E T I N A L
S U R G E RY

Computer vision and robotics are being increasingly applied in medi-
cal interventions. Especially in interventions where extreme precision
is required they could make a difference. One such application is
robot-assisted retinal microsurgery. In recent works, such interventions
are conducted under a stereo-microscope, and with a robot-controlled
surgical tool. The complementarity of computer vision and robotics
has however not yet been fully exploited. In order to improve the
robot control we are interested in 3D reconstruction of the anatomy
and in automatic tool localization using a stereo microscope. In this
chapter, we solve this problem for the first time using a single pipeline,
starting from uncalibrated cameras to reach metric 3D reconstruction
and registration, in retinal microsurgery. The key ingredients of our
method are: (a) surgical tool landmark detection and (b) 3D recon-
struction with the stereo microscope, using the detected landmarks.
To address the former, we propose a novel deep learning method that
detects and recognizes keypoints in high definition images at higher
than real-time speed. We use the detected 2D keypoints along with
their corresponding 3D coordinates obtained from the robot sensors to
calibrate the stereo microscope using an affine projection model. We
design an online 3D reconstruction pipeline that makes use of smooth-
ness constraints and performs robot-to-camera registration. The entire
pipeline is extensively validated on open-sky porcine eye sequences.
Quantitative and qualitative results are presented for all steps.

4.1 introduction

Robot and computer vision-assisted surgical procedures are becoming
more and more popular due to their ability to attain high precision.
One such procedure in ophthalmology involves the peeling of a retinal
membrane to improve human vision. In this setup, the surgeon observes
the retina and the tool under a stereo microscope while using a robotic
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arm to control the surgical tool with high precision. This work also
builds on such setup, consisting of a surgical tool which is positioned
by a robot, and a stereo camera pair that is directly mounted on the
surgical microscope. Generally, in such a setup the position of the
surgical tool is known with respect to the robot’s reference frame, but
its position relative to the retinal surface and the cameras is unknown.
As a result, for the robot to safely operate in an allowed region inside
the eye, additional distance sensors are used to measure and maintain
a safe distance to the retina. Visual guidance, however, still remains
infeasible due to the different camera and robot coordinate systems.
This means that information that comes from the processed images,
e.g., the outcome of a retinal segmentation algorithm [140], cannot be
effectively used. Due to limitations of the microscope acquisition it
is further difficult to recover the actual 3D retinal surface. Therefore,
accurate localization of the tool with respect to the retinal surface at
every instant during surgery remains a very challenging problem.

In this chapter we tackle the problem of stereo microscope calibration,
3D reconstruction of the retina, and the registration of the landmark
points on the tool with respect to the retinal surface. This is the first
time all these problems are tackled together. In order to localize both
the tool and the retinal surface in 3D, we exploit the robot kinematics
which can be measured very accurately with current robotic systems. In
this context we solve two important vision problems online: detecting
the tool points accurately in the images and reconstructing the retina
and the tool points in scale using the stereo microscope camera. Both
are challenging problems on their own [203, 183, 30]. Detecting tool
landmark points requires to take into account changes in viewpoint,
de-focused images, specularities and fast movements of the tool. In
addition, the surface reconstruction problem is hindered by the diffi-
culty of calibrating the microscope cameras and the specularities in
the images. Unlike consumer cameras, microscope cameras used in
retinal microsurgery pose additional challenges: a) the narrow field of
view and very long effective focal length, b) a small depth of field, c)
rolling shutter and d) varying rotation and unknown baseline. These
challenges make calibration very difficult in practice. Additionally, it is
not obvious which camera model and reconstruction strategy best fits
the problem of stereo reconstruction from microscopes used in retinal
microsurgery. We show that automatically detecting tool landmarks
in images, together with their respective 3D positions as they are di-
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rectly obtained from the robot kinematics provides a reliable solution
for microscope calibration and for the retinal reconstruction and tool
registration. Figure 4.1 gives an overview of our method.

RegistrationCalibration

Left Camera

Right Camera

Microscope

 2D Camera
Coordinates

Pig Eye
 3D Robot

Coordinates

Figure 4.1: Overview of our method: Proposed pipeline for stereo cal-
ibration, retina reconstruction and tool registration. The
microscope and the object of interest are not shown at the
correct, relative scale. In the actual setup, the object is orders
of times smaller and farther from the microscope.

The first task we tackle is markerless surgical tool keypoint detection
in images. Several methods [20] have been developed to detect tools in
images for various types of surgery. Most are based on hand-crafted
features such as those obtained by color image transforms, image gra-
dients and/or RGB pixel intensities [107, 7, 38]. Some work looked
into tool detection in the specific case of retinal microsurgery [203,
183]. Such previous contributions were either restricted to genera-
tion of rather inaccurate bounding boxes, or their computational cost
precluded real-time applications. We cast surgical tool detection as a
landmark localization problem. We draw inspiration from deep learn-
ing algorithms initially used for human pose estimation, in order to
detect the tool landmark points in images. We obtain automatically
the 3D to 2D correspondences of these landmark keypoints from the
robot kinematics. Our detection method runs on full-HD resolution
(1920× 1080 pixels) without the use of markers, at a frame rate of 35

frames per second with a GPU, and requires very few examples of
annotated images for training. Experiments show the effect of image
resolution on the detection of the tool landmarks and how detection
noise affects the camera calibration.

We tackle the problem of stereo microscope calibration using the de-
tected tool landmark points, by assuming a full affine camera model [71]
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for each microscope camera. Previous methods [30, 75] propose calibra-
tion of the affine camera by first reconstructing the object with affine
Structure from Motion (SfM) [207] and then computing the suitable
upgrade for calibration. This may not be reliable due to the inherent
problems of affine factorization-based SfM with respect to noise, the
occurrence of missing data, and reconstruction ambiguities. In contrast,
we formulate the calibration independent of the reconstruction, and
base it solely on the measured robot motion. This frees the calibra-
tion from potential errors in factorization based reconstruction. In our
pipeline, the tool is first moved around under the fixed cameras such
that a few depths are covered, while the 3D positions from the robot en-
coder and the observed landmark 2D detections are recorded. We then
use the full affine camera model to calibrate the intrinsics as well as the
extrinsics using a Gaussian noise prior on the measurements and affine
bundle adjustment. In order to initialize the bundle adjustment we use
the Direct Linear Transform (DLT) [71]. The projection matrices ob-
tained from the DLT calibration can be directly used to triangulate any
stereo correspondence to a 3D point in the robot reference coordinates
at the correct scale. We reconstruct the retinal surface by fitting a single
smooth surface to the triangulated points. We use Bicubic B-Splines
(BBS) to estimate the surface, using the point cloud while catering for its
outliers and noise. To the best of our knowledge, this is the first work to
employ the calibrated affine camera model for triangulating stereo pair
image correspondences with tens of µm accuracy. This is an important
result as calibration based on checkerboard patterns [232] and DLT with
the perspective camera model fails. In summary, we present a method
to obtain accurate camera as well as hand-eye calibration of the robot-
camera system, localization of the tool, and reconstruction of the retina,
all within the same pipeline. We use ex-vivo pig-eyes to validate our
method. We provide detailed evaluation for each part, separately and
in combination, showing several quantitative and qualitative results.

4.2 related work

CNNs for Landmark Localization: Convolutional Neural Networks
(CNNs) have recently revolutionized many computer vision tasks. Im-
age recognition on very large datasets such as ImageNet [103, 199, 74]
is one of the most representative examples. Models initially trained
on ImageNet can often be fine-tuned for a variety of tasks, thus pro-
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ducing state-of-the-art results, such as for object detection [178, 120]
and segmentation [233, 31]. Related to this chapter are the CNN-based
keypoint prediction methods, applied for Human Pose Estimation [154,
161, 208]. Drawing inspiration from such methods, we use a CNN to
directly regress the keypoints, and thus the 2D pose of the surgical tool.
Pavlakos et al. [160] use semantic keypoints to obtain the 6 degrees of
freedom (DoF) pose of objects. Their pipeline is limited by the GPU
memory, which enforces the authors to downsample the input images.
In contrast, our method uses full-HD stereo images (1080× 1920), and
we argue that keeping the input resolution is crucial for achieving accu-
rate localization. Concurrent work [104] uses tool landmark detection
for assisting segmentation. Different from that approach, we focus on
instrument landmark detection to assist in 3D vision tasks, such as
microscopic camera calibration, and robot-to-camera registration. Our
proposed method is also trained from scratch, meaning that we do
not rely on pre-trained ImageNet weights that are difficult to acquire,
and thus we are flexible in the network design. Our aim is to achieve
real-time performance, which is usually not possible using very deep
architectures [104].

Stereo Calibration and Reconstruction: There is an extensive litera-
ture on camera calibration for both stereo and monocular cameras [71,
232]. Yet, the problem is different for microscope cameras. For the
task of modeling the projection geometry, it is not clear which camera
models and calibration methods provide the best results. For example,
[9] considers a perspective camera model to calibrate a standard micro-
scope while [30] considers an affine camera model for a fundus camera.
Due to the special optical arrangement of the camera, the small size of
the viewed object and its relatively large distance to the camera, we use
the affine camera model. In [30], the authors propose to reconstruct the
retinal surface using classical affine Structure from Motion (SfM) [207],
with a fundus camera. Such reconstruction is known only up to an un-
known affine transform however, and the authors propose an upgrade
to metric reconstruction by solving a highly non-linear cost function
that requires a suitable initialization. The final retinal reconstruction
is obtained only after fitting a spherical surface to the reconstructed
points. In [75], the non-linear cost is avoided by using controlled robot
motions so that the affine shape from factorization [207] can be used
to formulate Linear Matrix Inequalities (LMI) for full affine calibration.
Both works [30, 75] rely on having an accurate affine reconstruction
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Figure 4.2: Stacked Hourglass Network (SHN) architecture overview:
SHN is a fully convolutional architecture, which consists of
multiple hourglass modules (two in the figure). Each hour-
glass is built by an encoder-decoder with skip connections.
Each box represents a residual module [74]. Each hourglass
is supervised by the l2 loss.

for calibration. In practice, affine factorization is challenging due to
outliers, missing data bound to be present in long view sequences as
required here, and hence may not give an accurate result. We therefore
propose to calibrate the affine cameras independently, using bundle
adjustment accurately initialized by DLT before moving on to the re-
construction. This allows us to reconstruct surfaces online. We also do
not require an a priori geometric model of the surface.

Current lines of work: Despite the high complexity of the presented
setup, our work has inspired further research for Calibration, 3D re-
construction and registration for robot-assisted surgery. Specifically,
in [236] the authors propose a hand-eye calibration technique for the
Optical Coherence Tomography (OCT) device and the robot, by de-
tecting the tip of the operating robot tool. In a follow-up work [237]
they propose to estimate 6-DoF pose of the tool from the point cloud
generated by the OCT. We note that information from stereo cameras
and OCT are complementary, they can both be used in parallel during
surgery, and as shown in these works, 3D processing can be tackled by
the pipeline suggested in this chapter in both modalities.

4.3 automatic surgical instrument landmark localization

Number of keypoints: Before designing the localization algorithm, a
careful consideration about the number of the landmark points required
by subsequent parts of the pipeline is needed. In general, we require
at least 3 non-collinear point correspondences in order to register two
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coordinate frames (from a single image). We therefore design our
CNN architecture to detect 3 keypoints in separate output channels.
Note that the number of keypoints has a diminishing impact on the
computational cost. In case of the surgical tool used for the retinal
membrane peeling, we select the base of the tool, as well as the two
tool tips as the landmark points of interest.

CNN architecture: For keypoint localization, we re-implemented
the Stacked Hourglass Network architecture (SHN) [154], which has
been proven very effective for Human Pose Estimation. Human pose
estimation is dominated by keypoint localization approaches, focusing
on various joints and landmarks of the human body (eg. head, right
shoulder, etc.). Inspired by this approach, we substitute the body land-
marks by the instrument landmarks, which makes SHN suitable for our
purpose, although the original task is substantially different. SHN is a
fully convolutional architecture, that consists of convolutional, ReLU,
and pooling layers. Its core component is an encoder-decoder network
enriched with skip connections. SHN is created by stacking together
multiple such components, in a way such that the output of a previous
component is the input to the next. Like this, coarse and fine features
are gradually interchanged by pooling and upsampling operations on
the feature maps, which builds a powerful representation for dense
prediction tasks. SHNs also make extensive use of residual blocks [74]
and intermediate supervision [108] which further enhance their per-
formance. Figure 4.2 provides an overview of the SHN architecture.
For a more detailed description, we refer the reader to the original
paper [154]. We conducted a set of ablation experiments, with multiple
architecture designs, where we concluded that the SHN architecture
works best for the task of tool keypoint localization (Section 4.5.2).

We formulate tool keypoint localization as a heatmap regression
problem. Specifically, for each keypoint, we regress a heatmap with its
predicted location, as a separate channel of the CNN. We work with
3 keypoints and consequently 3 heatmaps. Our supervisory signal
consists of the ground-truth locations, on top of which 2D Gaussians
with standard deviation σ are centered. Centering Gaussians around
the keypoints improves stability during training, since they ensure a
softer loss over slight mis-localized detections. We train to minimize
the l2 loss. During inference, the peak activations in the final layer are
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considered the locations of the keypoints. Specifically, we obtain the
location of the kth keypoint as:

ûdet,k =
1
|∆|∑∆

(ûmax,k + ∆) pk (ûmax,k + ∆) (4.1)

where pk(.) is the probabilistic activation of the k-th heatmap, ûmax,k =

argmax pk, and ∆ is a small neighborhood. In our case, we define ∆ as
a circular neighborhood with radius 3σ. An example for the detected
heatmaps is shown in Fig. 4.4. The detected 2D keypoints, together with
the corresponding 3D locations acquired by the robot kinematics are
fed to the next stages of the pipeline: camera calibration, registration,
and 3D reconstruction.

4.4 automatic calibration and 3d reconstruction

4.4.1 Stereo Camera Calibration Using Robot Kinematics

The problem of stereo camera calibration refers to that of obtaining
the intrinsics and pose (extrinsics) of the cameras. The stereo camera
used in retinal microsurgery, such as the one in Fig. 4.1, allow for
a continuous adjustment of zoom and independent rotation of the
cameras in a plane. Consequently, both extrinsics and intrinsics may
change during the surgery. The standard way to calibrate a perspective
camera is to use [232] on several images of a planar checkerboard
pattern.

However, for the microscope cameras used in retinal microsurgery
the projections are affine. This is because the distance from camera to
object is orders of magnitudes larger than the object’s size and the depth
of field. Consequently, rays arrive almost parallel at the camera plane
and perspective effects vanish. In such cases the equations of [232] are
not well-conditioned and cannot be solved reliably. Furthermore, the
use of a checkerboard is limited in practice, since in a realistic scenario
a checkerboard can not be inserted into a human eye, which is the last
thing that changes the optics for retinal surgery.

Automatic 3D-2D Correspondence Acquisition: In the case of robot-
assisted surgery, we can exploit the fact that we are able to manipulate
any surgical tool in 3D space while having instant position feedback
computed using the robot kinematics. We therefore propose to tackle
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the problem of affine stereo calibration by relying on automatic detec-
tion of distinct keypoints on the robot tool in the image. Having access
to synchronized real-time kinematics, we can automatically accumulate
any desired number of 3D-2D correspondences C. Note that, given the
robot-assisted surgical procedure, we obtain the correspondences for
free once we have the 2D tool landmark predictions.

C =
{
(x, ul , ur) ∈ R3 ×R2 ×R2

}
t,k

t ∈ [1, nt]

k ∈ [1, nk]
(4.2)

While observing a sequence of nt frames with a static camera pair,
we detect nk keypoints of the moving tool in each frame t, resulting
in a set of |C| = nknt correspondences. For each correspondence
in (x, ul , ur)i ∈ C, x is the tool 3D landmark expressed in the robot
coordinate system while we refer to the corresponding 2D keypoints
on the images as ul and ur for the left and the right camera. We use
the subscript i as xi, ul

i or ur
i to denote the i-th 3D point in C and its

projection on the left and right image, respectively.

Joint Affine Stereo Pair Calibration: We now formulate camera
calibration as a problem of fitting an affine camera to model the image
projections from given 3D points in the robot reference frame. Since
we can control the robot, we make sure that a sufficient 3D volume
is covered with point correspondences, to maximize the calibration
accuracy. We are interested in an online stereo system that triangulates
and reconstructs surfaces close to real-time from a pair of stereo images.
Thus we deviate from the standard calibration methods based on affine
reconstruction [30, 75] and triangulate Euclidean shapes directly using
calibrated cameras. The affine camera projection is modeled by the
projection matrix M ∈ PAffine ⊂ R2×4 as u = M

[
x> 1

]>.

In order to jointly calibrate the stereo pair Ml , Mr, while accommodat-
ing for noise in the 2D detections and 3D measurements, we write the
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following energy to robustly minimize reprojection errors in a bundle
adjustment fashion:

min
Ml ,Mr ,x̃,ũl ,ũr

EΠ(M
c, x̃, ũc) + σ−1

u EΘ(ũc) + σ−1
x EΦ(x̃)

subject to, Mc ∈ PAffine, c ∈ {l, r}

EΠ(M
c, x̃, ũc) =

1
2 ∑

c
∑

i
(ũc

i −Mcx̃i)
2

EΘ(ũc) =
1
2 ∑

c
∑

i
(ũc

i − uc
i )

2

EΦ(x̃) =
1
2 ∑

i
(x̃i − xi)

2. (4.3)

The minimization problem in Eq. 4.3 is essentially the bundle adjust-
ment for an affine camera. The first term describes the reprojection
error. The last two terms model the uncertainty in the measurements
as Gaussians with standard deviations σu, σx. We assume different
intrinsics for each of the stereo camera pair and jointly optimize for
the camera parameters Ml,r, the 3D point positions x̃i, as well as for
the 2D projections ũl,r

i . Eq. 4.3 is optimized using a gradient-based
interior-point technique.

Robust DLT for affine camera projection: In order to initialize the
non-linear problem in Eq. 4.3 with a feasible configuration, we perform
an affine Direct Linear Transform (DLT) on each camera separately.
Writing down the affine projection for each point gives us the following
system of equations for each camera:

[
u1 . . . un

]
= M

[
x1 . . . xn

1 . . . 1

]
. (4.4)

We solve for M in Eq. 4.4 by using the DLT algorithm [71] modified for
affine projections. The problem becomes that of a linear least squares
(LLS) that requires a minimum of n = 4 non-coplanar points. To
tackle outliers and noise in 2D detections, we use Random Sample and
Concensus (RANSAC) to estimate the projection matrix with Eq. 4.4.
Although camera distortion could easily be included, this is not used
for the sake of stability and better robustness against noise. Including
distortion parameters also increases the number of minimum points
needed by RANSAC, as well as the number of parameters in Eq. 4.3,
outweighing the advantages of a more complex model.
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Affine camera resection: For the perspective camera, resection refers
to the decomposition of the projection matrix into the intrinsic calibra-
tion matrix and the 6 DoF pose of the camera. In the affine model, the
problem is similar but only two rows of rotation and two translation
components exist in the affine projection matrix. Consequently, the
decomposition of the affine projection matrix is expressed as:

M = K

[
r>1 t1

r>2 t2

]
, K =

[
αx s
0 αy

]
(4.5)

where r>1 and r>2 are the first and second rows of a rotation matrix;
t1 and t2 are the translation components, and K is the intrinsic affine
calibration matrix. K is found by QR factorization of the projection
matrix M. This gives the intrinsic calibration as well as the pose of
each camera with respect to the robot reference frame except for the
translation along the optical axis. The optimal camera parameters
follow from Eq. 4.3 while enforcing s = 0 for stability. The intrinsics
and pose parameters estimated from the bundle adjustment are used
to recompute the camera projection matrices.

4.4.2 Stereo Matching and Reconstruction

The standard pipeline for stereo reconstruction with calibrated per-
spective cameras consists of dense disparity computation and depth
map estimation by triangulation. The lighting used in retinal micro-
surgery often contaminates the images with specularities as well as
other reflections, however. We therefore opt for a semi-dense matching
method such as Deep Matching [214]. We filter out outliers based
on the epipolar geometry derived from the affine fundamental matrix
obtained during calibration. We then triangulate the matched points
using the two affine projection matrices M̂l and M̂r for the stereo pair.
Triangulation is possible because our estimated projection matrices are
accurate. This directly gives us the 3D points of the observed surface in
the Euclidean robot reference frame.

Robust surface estimation: The 3D points obtained from the trian-
gulation contain outliers and noise due to two reasons. First, outlier
removal using the epipolar geometry cannot reject all outliers in the
stereo matches. Second, the affine triangulation is sensitive to noise
naturally present in the 2D correspondences. In such case using a
surface prior model such as a sphere for the retina [30], can make the

69



reconstruction better, but such a surface constraint may be too limiting.
In the case of the open-sky pig eyes used for our tests, the retinas
are far from spherical and can be of any smooth shape. We therefore
propose to fit a single surface using Bicubic B-Splines (BBS) [211]. We
use the image as the parametrization space for representing the surface.
The surface Ψ : u → x̂ is thus a function of the image points u ∈ Ω
and the spline coefficients c ∈ R2nc , where nc is the number of spline
coefficients used to represent the surface. Consider there are nr 3D
points with the same number of 2D image correspondences. We express
the surface reconstruction problem as:

ĉ = argmin
c

nr

∑
i=1
‖Ψ(ui; c)− xi‖1 + µ

∫
Ω

∥∥∥∥ ∂2

∂u2 Ψ(u; c)
∥∥∥∥2

2
(4.6)

Eq. 4.6 consists of a data term under the l1-norm as well as a regularizer
which penalizes very high frequency changes over the surface. The
two terms are balanced by a hyperparameter µ ∈ R+. We choose the
l1-norm to obtain a more robust surface fitting [39]. We also reject
points where the l1-norm of the data term exceeds a certain threshold ε.
We then re-estimate the surface by solving Eq. 4.6 with the remaining
points. The single iteration of point rejection and surface re-estimation
gives a surface that is smooth and largely free of the reconstruction
noise.

4.4.3 Registration

We define registration as the transformation of the camera pose and
reconstructions to the robot coordinate frame. This is necessary be-
cause the stereo microscope (and the mounted cameras) may be moved
during its use. Such motion can be measured from the images by the
Perspective n-Point (PnP) method [111]. However, PnP cannot be used
with the affine camera and we therefore compute registration using
the reconstruction of the tool landmark positions and their positions
measured by the robot kinematics.

Consider (Rc, tc), c ∈ {l, r} to be the 6 DoF pose of the camera c
with respect to its initial position, where Rc ∈ SO3 is the rotation and
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tc ∈ R3 is the translation undergone by the microscope cameras. We
then express the registration problem as:

min
Rc, tc

nkn f

∑
i=1

∥∥∥Rcx̂i + t− xgt
i

∥∥∥
2

(4.7)

where x̂i is the ith triangulated tool landmark 3D point and xgt
i is the

3D ith tool landmark point as measured by the robot’s measurement
system. Eq. 4.7 is a well-studied problem and can be solved linearly
using only three non-collinear points. In practice, a more accurate pose
estimate is obtained by using multiple frames and accumulating 3D-3D
correspondences, assuming a static camera within this time window.

4.5 experiments

4.5.1 Dataset

In order to train the deep network for keypoint localization, we manu-
ally annotated sequences of stereo images for the tool of interest with 3

keypoint locations. Such annotations are acquired with minimal effort,
since for each stereo pair only 6 mouse-clicks are necessary. Apart
from the manual 2D annotations, we acquired the 3D locations of the
keypoints, from the kinematics of the robot. The dataset consists of
10 sequences, acquired from different pig eyes, with both artificial
movements that help calibration and realistic movements performed
by a surgeon. It includes more than 1500 full HD images and their
labels. We limit acquisition to one type of tool, since our aim is accuracy
rather than generalizing to different ones. The method itself is easily
adaptable to other types of surgery, and tools with different landmarks.
The dataset is publicly released to ease further research.

4.5.2 Evaluation of Keypoint Localization

Training details: For keypoint localization, we split the data into train-
ing and testing sets, and train the SHN model for 150 epochs. We use
7 sequences for training, and 3 for testing. Results for localization are
reported for all images of the testing set. We use RMSProp [154] with
α = 0.99 and zero momentum. The initial learning rate is set to 5 · 10−5,
and is adapted by RMSProp for each of the layers. We use a standard
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deviation of σ = 5 for the 2D gaussians centered on the keypoints. To
avoid overfitting, we use extensive data augmentation that consists of
random rotations [−30◦, 30◦], and zooming [0.75×, 1.25×]. The images
of the training set are randomly permuted, and a single model is trained
for both the left and the right camera. For all our experiments, we train
the models from scratch, in less than 4 hours with an NVidia Titan-X
GPU. During testing, our batch contains both left and right images of
the stereo camera. We note that during inference the CNN processes
the images in higher than real time speed. Real time performance is
especially important for 3D registration when the camera moves, and
thus we keep all our experiments above the threshold of 30Hz. We
found that in practice, a stack of 2 Hourglasses is a fair compromise
of speed and accuracy, when processing full-HD (1920× 1080) images.
Common models pre-trained on ImageNet [199, 74, 104] are much more
memory and computation intensive, not allowing to process images at
such resolution, let alone in real-time.

Evaluation metric: For evaluation of the 2D keypoint localization, we
use the Percentage of Correct Keypoints (PCK) measure (also referred
to as KBB [104]). In PCK, a detection is considered correct, if it falls
‘near enough’ to the label. The threshold is computed as a percentage
of the distance of the tool-tip from its base.

Network architecture ablation: In order to decide on the final CNN
architecture, we conduct an ablation experiment to show the importance
of each of the used components. Starting from an encoder architecture
like the ones used for image classification (without the fully connected
layers), we observe poor performance (8.4% PCK) due to the heavily
downsampled output. Adding the decoder architecture immediately
solves this problem (75.1%). Skip connections and a second hourglass
boost the overall performance further (95.2% and 99.6%). Substituting
the convolutional modules by residual ones gives diminishing returns.

Architecture Encoder +Decoder +Skip Connections +Stacked +Residual

PCK@0.05 8.4 75.1 95.2 99.6 99.7

Table 4.1: CNN architecture ablation: Various CNN architectures tested
for keypoint localization and their quantitative contributions
to the result.
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Input image resolution: Fig. 4.3 illustrates the PCK measure as a
function of the threshold for the accepted mis-localization, for various
input image resolutions. For full-HD images, above the threshold of
1%, almost all detections are correct. The same accuracy is obtained for
images of 480× 640, for a threshold 6 times larger. Small errors in 2D
lead to larger errors in 3D, so we argue that accurate 2D localization is
crucial for the next steps of the pipeline, such as calibration (Fig. 4.5).
Fig. 4.4 shows some qualitative examples of keypoint localization, ob-
tained for high resolution images.
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Figure 4.3: Tool localization accuracy: The PCK accuracy measure as
a function of the maximum tolerance, for different input
image resolutions. Tolerance is normalized by the size of
the instrument tip.

Timing: Table 4.2 shows the execution rate of the CNN when the
input resolution is varied. The timing regards the forward pass and
the post-processing to obtain the locations of the landmarks from the
heatmaps, for a batch of 2 images (left and right). Although we sacrifice
execution speed for accuracy by using full HD images, the landmark
localization remains faster than real-time (30Hz) at all resolutions. All
experiments were conducted on a NVidia Titan-X GPU.
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Table 4.2: Execution Times: Performance as a function of the input image
resolution. All models achieve better than real-time perfor-
mance.

Resolution 1080p 480p 480× 640 256× 448

Frequency (Hz) 35 77 95 140

Figure 4.4: Qualitative results for keypoint localization: Keypoint lo-
calization on an example stereo image pair (top) and more
qualitative example in another scenario (bottom).

4.5.3 Evaluation of Calibration

As to the calibration, we first investigate the influence of the image reso-
lution used for keypoint detection. Fig. 4.5 shows the 3D reconstruction
error and the 2D reprojection error for calibrations based on ground
truth (GT) annotations and based on detections from four different
image resolutions. Note that for 1080p we obtain virtually the same
calibration quality as by using the manual annotation. As expected,
the triangulation error as well as the reprojection error increase with
lower resolutions. To validate the fitness of the affine camera model, we
compare results with a perspective camera model calibrated with DLT
from the full resolution annotations. This yields a much more unstable
result compared to the affine model on the same data. Additionally,
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  automatic detection

Figure 4.5: Calibration accuracy: We calibrate the stereo cameras using
annotated tool keypoints (GT), and tool keypoint detections
at four different image resolutions. The figures illustrate
the 3D triangulation error (left) and 2D reprojection errors
(right) for perspective and affine calibration. Clearly, the
affine model performs better.

Figure 4.6: Pig Eye Reconstruction: Each row shows the result of our
reconstruction method for a different pig eye.

decomposition of the perspective projection matrix is not possible due
to the influence of the large focal length on the matrix conditioning.

Using our automatic affine calibration, we performed a second exper-
iment to gauge reconstruction accuracy for a known planar calibration
object. Instead of relying on the robot kinematics, we analyzed calibra-
tion accuracy by reconstructing points on a checkerboard with 0.5 mm
squares. To minimize mismatching and correspondence noise we use
manual correspondences refined by a corner detector. In this optimal
setup, we observe a Root Mean Square Error (RMSE) of 25.479 µm in
the reconstruction.
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Figure 4.7: Generic Object Reconstruction: Each row shows the result
of our reconstruction method for one object.

4.5.4 Retinal Reconstruction and Tool Registration

We reconstruct three open-sky pig eye sequences, each one for a differ-
ent eye. The left camera image and the corresponding reconstructions
are shown in Fig. 4.6. To qualitatively evaluate the reconstructions, we
show some of everyday objects in Fig. 4.7. Like the pig-eye the objects
are roughly 1cm in size. The reconstructions of the screw and leaf are
particularly interesting because this shows that we can get high and
low frequency surface aspects. Finally, we evaluate the registration
using reconstructed tool points. Since there is no ground-truth label
regarding the relative positions of the cameras, we synthetically move
them by changing their projection matrices and measure the new pose
using Eq. 4.7. We use one to several frames of the moving tool to mea-
sure the pose accuracy. Using nk = 3 keypoints, we achieve an error
below 150 µm after about 3 frames as shown in Fig. 4.8. This shows
that we are able to quickly recover from 3D tracking failure in case the
camera undergoes a change in pose by monitoring the consistency of
the transformation over time. Note that the kinematics of our robot
achieve accuracy of approximately 10 µm, whereas the diameter of
a targeted vessel can range between 50 and 300 µm [53]. The online
reconstruction pipeline in our proof-of-concept implementation runs at
about 5Hz speed, the main bottleneck being the DeepMatching [214]
method. Note that, although the speed may be increased further in the
running system, currently envisioned applications do not necessarily
require real-time reconstruction speed.
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Figure 4.8: Tool Registration: Translational and rotational errors of the
estimated alignment of the tool w.r.t. the camera frame. We
express rotational errors with Euler angles (ΦX, ΦY, and
ΦZ).

4.6 conclusions

This chapter presented a new method for camera calibration, 3D recon-
struction and registration, from automatically detected keypoints on a
robotic end effector. Specifically, we use the 3D locations of the tool and
the corresponding 2D locations on the acquired stereo images to estab-
lish correspondences, and initialize an affine bundle adjustment with
the DLT method. We proposed a Stacked Hourglass CNN to detect the
keypoints, which results in a very accurate and fast localization of the
landmarks. We applied our method to robot-assisted eye surgery, where
3D processing is complicated due to various issues with microscope
camera imaging and the quality of the acquired data. We validated
each component of our pipeline independently and in combination. We
created and released a database that can facilitate training CNNs for the
task, and we show quantitative and qualitative results for all the steps
of our algorithm. Results show high quality keypoint localization, 3D
reconstruction, and registration, all in the context of a single pipeline.
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5
AT T E N T I V E S I N G L E - TA S K I N G O F M U LT I P L E TA S K S

In this chapter we address task interference in universal networks by
considering that a network is trained on multiple tasks, but performs
one task at a time, an approach we refer to as “Attentive Single-Tasking
of Multiple Tasks” (ASTMT). The network thus modifies its behavior
through task-dependent feature adaptation, or task attention. This gives
the network the ability to accentuate the features that are adapted to a
task, while shunning irrelevant ones. We further reduce task interfer-
ence by forcing the task gradients to be statistically indistinguishable
through adversarial training, ensuring that the common backbone ar-
chitecture serving all tasks is not dominated by any of the task-specific
gradients.

Results in three multi-task dense labeling problems consistently show:
(i) a large reduction in the number of parameters while preserving,
or even improving performance and (ii) a smooth trade-off between
computation and multi-task accuracy.

5.1 introduction

Real-world problems involve a multitude of visual tasks that call for
multi-tasking, universal vision systems. For instance autonomous
driving requires detecting pedestrians, estimating velocities and reading
traffic signs, while identity recognition, pose, face and hand tracking
are required for human-computer interaction.

A thread of works have introduced multi-task networks [194, 52, 73,
98] handling an increasingly large number of tasks. Still, it is common
practice to train devoted networks for individual tasks when single-task
performance is critical. This is supported by negative results from
recent works that have aimed at addressing multiple problems with
a single network [73, 98] - these have shown that there is a limit on
performance imposed by the capacity of the network, manifested as a
drop in performance when loading a single network with more tasks.
Stronger backbones can uniformly improve multi-task performance,
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Figure 5.1: Learned representations across tasks and layers: We visu-
alize how features change spatially in different depths of
our multi-task network. For each layer (row) we compute a
common PCA basis across tasks (column) and show the first
three principal components as RGB values at each spatial
location. We observe that the features are more similar in
early layers and get more adapted to specific tasks as depth
increases, leading to disentangled, task-specific representa-
tions in the later layers. We see for instance that the normal
task features co-vary with surface properties, while the part
features remain constant in each human part.

but still the per-task performance can be lower than the single-task
performance with the same backbone.

This problem, known as task interference, can be understood as
facing a the dilemma of invariance versus sensitivity: the most crucial
information for one task can be a nuisance parameter for another,
which leads to potentially conflicting objectives when training multi-
task networks. An example of such a task pair is pose estimation
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Figure 5.2: Overview of ASTMT: While using a shared backbone net-
work, every task adapts its behavior in a separate, flexible,
and lightweight manner, allowing us to customize com-
putation for the task at hand. We refine features with a
task-specific residual adapter branch (RA), and attend to par-
ticular channels with task-specific Squeeze-and-Excitation
(SE) modulation. We also enforce the task gradients (dashed
lines) to be statistically indistinguishable through adver-
sarial training, further promoting the separation between
task-specific and generic layers.

and object detection: when detecting or counting people the detailed
pose information is a nuisance parameter that should be eliminated
at some point from the representation of a network aiming at pose
invariance [73]. At the same time, when watching a dance performance,
one needs the detailed pose of the dancers, while ignoring the large
majority of spectators. More generally this is observed when combining
a task that is detail-oriented and requires high spatial acuity with a task
that requires abstraction from spatial details, e.g. when one wants to
jointly do low- and high-level vision. In other words, one task’s noise
is another one’s signal.

We argue that this dilemma can be addressed by single-tasking,
namely executing task a time, rather than getting all task responses in
a single forward pass through the network. This reflects many practical
setups, for instance when one sees the results of a single computational
photography task at a time on the screen of a mobile phone, rather
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than all of them jointly. Operating in this setup allows us to implement
an “attention to task” mechanism that changes the network’s behavior
in a task-adapted manner, as shown in Fig. 5.1. We use the exact
same network backbone in all cases, but we modify the network’s
behavior according to the executed task by relying on the most task-
appropriate features. For instance when performing a low-level task
such as boundary detection or normal estimation, the network can
retain and elaborate on fine image structures, while shunning them for
a high-level task that requires spatial abstraction.

We explore two different task attention mechanisms, as shown in Fig. 5.2.
Firstly, we use data-dependent modulation signals [163] that enhance
or suppress neuronal activity in a task-specific manner. Secondly, we
use task-specific Residual Adapter [174] blocks that latch on to a larger
architecture in order to extract task-specific information which is fused
with the representations extracted by a generic backbone. This allows
us to learn a shared backbone representation that serves all tasks but
collaborates with task-specific processing to build more elaborate task-
specific features.

These two extensions can be understood as promoting a disentangle-
ment between the shared representation learned across all tasks and
the task-specific parts of the network. Still, if the loss of a single task is
substantially larger, its gradients will overwhelm those of others and
disrupt the training of the shared representation. In order to make sure
that no task abuses the shared resources we impose a task-adversarial
loss to the network gradients, requiring that these are statistically in-
distinguishable across tasks. This loss is minimized during training
through double back-propagation [49], and leads to an automatic bal-
ancing of loss terms, while promoting compartmentalization between
task-specific and shared blocks.

5.2 related work

This chapter draws ideas from several research threads.
Multiple Task Learning (MTL): Several works have shown that

jointly learning pairs of tasks yields fruitful results in computer vision.
Successful pairs include detection and classification [61, 178], detection
and segmentation [73, 51], or monocular depth and segmentation [52,
221]. Joint learning is beneficial for unsupervised learning [172], when
tasks provide complementary information (eg. depth boundaries and
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motion boundaries [240]), in cases where task A acts as regularizer
for task B due to limited data [123], or in order to learn more generic
representations from synthetic data [182]. Xiao et al. [217] unify inho-
mogeneous datasets in order to train for multiple tasks, while [230]
explore relationships among a large amount of tasks for transfer learn-
ing, reporting improvements when transferring across particular task
pairs.

Despite these positive results, joint learning can be harmful in the
absence of a direct relationship between task pairs. This was reported
clearly in [98] where the joint learning of low-, mid- and high-level
tasks was explored, reporting that the improvement of one task (e.g.
normal detection) was to the detriment of another (e.g. object detection).
Similarly, when jointly training for human pose estimation on top of
detection and segmentation, Mask R-CNN performs worse than its
two-task counterpart [73].

This negative result first requires carefully calibrating the relative
losses of the different tasks, so that none of them deteriorates exces-
sively. To address this problem, GradNorm [35] provides a method to
adapt the weights such that each task contributes in a balanced way
to the loss, by normalizing the gradients of their losses; a more recent
work [200] extends this approach to homogenize the task gradients
based on adversarial training. Following a probabilistic treatment [88]
re-weigh the losses according to each task’s uncertainty, while Sener and
Koltun [193] estimate an adaptive weighting of the different task losses
based on a pareto-optimal formulation of MTL. Similarly, [64] provide
a MTL framework where tasks are dynamically sorted by difficulty and
the hardest are learned first.

A second approach to mitigate task interference consists in avoiding
the ‘spillover’ of gradients from one task’s loss to the common features
serving all tasks. One way of doing this is explicitly constructing com-
plementary task-specific feature representations [189, 186], but results in
an increase of complexity that is linear in the number of tasks. An alter-
native, adopted in the related problem of lifelong learning consists in re-
moving from the gradient of a task’s loss those components that would
incur an increase in the loss of previous tasks [94, 128]. For domain
adaptation [21] disentangle the representations learned by shared/task-
specific parts of networks by enforcing similarity/orthogonality con-
straints. Adversarial Training has been used in the context of domain
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adaptation [59, 123] to the feature space in order to fool the discrimina-
tor about the source domain of the features.

In our understanding these losses promote a compartmental opera-
tion of a network, achieved for instance when a block-structured weight
matrix prevents the interference of features for tasks that should not
be connected. A deep single-task implementation of this would be the
gating mechanism of [5]. For multi-tasking, Cross Stitch Networks [146]
automatically learn to split/fuse two independent networks in different
depths according to their learned tasks, while [149] estimate a block-
structured weight matrix during CNN training, and [191] search for the
best combination of layers for different tasks, starting from a gigantic
pre-specified network.

Attention mechanisms: Attention has often been used in deep learn-
ing to visualize and interpret the inner workings of CNNs [198, 231,
192], but has also been employed to improve the learned representations
of convolutional networks for scale-aware semantic segmentation [32],
fine-grained image recognition [57] or caption generation [222, 130,
10]. Squeeze and Excitation Networks [79] and their variants [215, 78]
modulate the information of intermediate spatial features according to
a global representation and be understood as implementing attention to
different channels. Deep Residual Adapters [175, 174] modulate learned
representations depending on their source domain. Several works study
modulation for image retrieval [235] or classification tasks [163, 148],
and embeddings for different artistic styles [50]. [226] learns object-
specific modulation signals for video object segmentation, and [185]
modulates features according to given priors for detection and seg-
mentation. In our case we learn task-specific modulation functions
that allow us to drastically change the network’s behavior while using
identical backbone weights.

5.3 attentive single-tasking mechanisms

Having a shared representation for multiple tasks can be efficient from
the standpoint of memory- and sample- complexity, but can result in
worse performance if the same resources are serving tasks with unre-
lated, or even conflicting objectives, as described above. Our proposed
remedy to this problem consists in learning a shared representation
for all tasks, while allowing each task to use this shared representation
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Figure 5.3: Single-task network architecture: We use Deeplab-v3+
with a Squeeze-and-Excitation (SE)-ResNet backbone. SE
modules are present in all bottleneck blocks of the encoder
and the decoder. Attentive multi-tasking uses different SE
layers per task to modulate the network features in a task-
specific manner.

differently for the construction of its own features.

5.3.1 Task-specific feature modulation

In order to justify our approach we start with a minimal example.
We consider that we have two tasks A and B that share a common
feature tensor F(x, y, c) at a given network layer, where x, y are spatial
coordinates and c = 1, . . . , C are the tensor channels. We further assume
that a subset SA of the channels is better suited for task A, while SB is
better for B. For instance if A is invariant to deformations (detection)
while B is sensitive (pose estimation), SA could be features obtained by
taking more context into account, while SB would be more localized.
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One simple way of ensuring that tasks A and B do not interfere while
using a shared feature tensor is to hide the features of task B when
training for task A:

FA(x, y, c) = mA[c] · F(x, y, c) (5.1)

where mA[c] ∈ {0, 1} is the indicator function of set SA. If c /∈ SA then
FA(x, y, c) = 0, which means that the gradient ∂LA

∂F(x,y,c) sent by the loss
LA of task A to c ∈ SA will be zero. We thereby avoid task interference
since Task A does not influence nor use features that it does not need.

Instead of this hard choice of features per task we opt for a soft,
differentiable membership function that is learned in tandem with
the network and allows the different tasks to discover during training
which features to use. Instead of a constant membership function per
channel we opt for an image-adaptive term that allows one to exploit
the power of the squeeze-and-excitation block [79].

In particular we adopt the squeeze-and-excitation (SE) block (also
shown in Fig. 5.2), combining a global average pooling operation of the
previous layer with a fully-connected layer that feeds into a sigmoid
function, yielding a differentiable, image-dependent channel gating
function. We set the parameters of this layer to be task-dependent,
allowing every task to modulate the available channels differently. As
shown in Section 5.5, this can result in substantial improvements when
compared to a baseline that uses the same SE block for all tasks.

5.3.2 Residual Adapters

The feature modulation described above can be understood as shunning
those features that do not contribute to the task while focusing on the
more relevant ones. Intuitively, this does not add capacity to the net-
work but rather cleans the signal that flows through it from information
that the task should be invariant to. We propose to complement this by
appending task-specific sub-networks that adapt and refine the shared
features in terms of residual operations of the following form:

LA(x) = x + L(x) + RAA(x), (5.2)

where L(x) denotes the default behaviour of a residual layer, RAA is
the task-specific residual adapter of task A, and LA(x) is the modified
layer. We note that if L(x) and RAA(x) were linear layers this would
amount to the classical regularized multi-task learning of [55].
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Figure 5.4: Illustration of double back-propagation: Double backprop
[49] exposes the gradients computed during backprop (row
1) by unfolding the computation graph of gradient computa-
tion (row 2). Exposing the gradients allows us to train them
in an adversarial setting by using a discriminator, forcing
them to be statistically indistinguishable across tasks (row
3). The shared network features x then receive gradients
that have the same distribution irrespective of the task, en-
suring that no task abuses the shared network, e.g. due to
higher loss magnitude. The gradient of the discriminator is
reversed (negated) during adversarial training, and the pa-
rameter λ ∈ [0, 1] controls the amount of negative gradient
that flows back to the network [59].

These adapters introduce a task-specific parameter and computation
budget that is used in tandem with that of the shared backbone network.
We show in Section 5.5 that this is typically a small fraction of the budget
used for the shared network, but improves accuracy substantially.

When employing disentangled computation graphs with feature
modulation through SE modules and/or residual adapters, we also
use task-specific batch-normalization layers, that come with a trivial
increase in parameters (while the computational cost remains the same).
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5.4 adversarial task disentanglement

The idea behind the task-specific adaptation mechanisms described
above is that even though a shared representation has better mem-
ory/computation complexity, every task can profit by having its own
‘space’, i.e. separate modelling capacity to make the best use of the
representation - by modulating the features or adapting them with
residual blocks.

Pushing this idea further we enforce a strict separation of the shared
and task-specific processing, by requiring that the gradients used to
train the shared parameters are statistically indistinguishable across
tasks. This ensures that the shared backbone serves all tasks equally
well, and is not disrupted e.g. by one task that has larger gradients.

We enforce this constraint through adversarial learning. Several meth-
ods, starting from Adversarial Domain Adaptation [60], use adversarial
learning to remove any trace of a given domain from the learned mid-
level features in a network; a technique called Adversarial multi-task
training [123] falls in the same category.

Instead of removing domain-specific information from the features
of a network (which serves domain adaptation), we remove any task-
specific trace from the gradients sent from different tasks to the shared
backbone (which serves a division between shared and task-specific
processing). A concurrent work [200] has independently proposed this
idea.

As shown in Fig. 5.4 we use double back-propagation [49] to ‘expose’
the gradient sent from a task t to a shared layer l, say gt(l). By exposing
the variable we mean that we unfold its computation graph, which in
turn allows us to back-propagate through its computation. By back-
propagating on the gradients we can force them to be statistically
indistinguishable across tasks through adversarial training.

In particular we train a task classifier on top of the gradients lying
at the interface of the task-specific and shared networks and use sign
negation to make the task classifier fail [59]. This amounts to solving the
following optimization problem in terms of the discriminator weights,
wD and the network weights, wN :

minwD maxwN L(D(gt(wN), wD), t), (5.3)
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where gt(wN) is the gradient of task t computed with wN , D(·, wD) is
the discriminator’s output for input ·, and L(·, t) is the cross-entropy
loss for label t that indicates the source task of the gradient.

Intuitively this forces every task to do its own processing within its
own blocks, so that it does not need from the shared network anything
different from the other tasks. This results in a separation of the network
into disentangled task-specific and shared compartments.

5.5 experimental evaluation

Datasets: We validate our approach on different datasets and tasks. We
focus on dense prediction tasks that can be approached with fully con-
volutional architectures. Most of the experiments are carried out on the
PASCAL [54] benchmark, which is popular for dense prediction tasks.
We also conduct experiments on the smaller NYUD [151] dataset of
indoor scenes, and the recent, large scale FSV [100] dataset of synthetic
images. Statistics, as well as the different tasks used for each dataset
are presented in Table 5.2.

Base architecture: We use our re-implementation of Deeplab-v3+ [33]
as the base architecture of our method, due to its success on dense
semantic tasks. Its architecture is based on a strong ResNet encoder,
with a-trous convolutions to preserve reasonable spatial dimensions
for dense prediction. We use the latest version that is enhanced with a
parallel a-trous pyramid classifier (ASPP) and a powerful decoder. We
refer the reader to [33] for more details. The ResNet-101 backbone used
in the original work is replaced with its Squeeze-and-Excitation coun-
terpart (Fig. 5.3), pre-trained on ImageNet [188]. The pre-trained SE
modules serve as an initialization point for the task-specific modulators
for multi-tasking experiments.

The architecture is tested for a single task in various competitive
benchmarks for dense prediction: edge detection, semantic segmen-
tation, human part segmentation, surface normal estimation, saliency,
and monocular depth estimation. We compare the results obtained
with various competitive architectures. For edge detection we use
the BSDS500 [144, 11] benchmark and its optimal dataset F-measure
(odsF) [143]. We use the fast SEISM [167] library for boundary detec-
tion evaluation. For semantic segmentation we train on PASCAL VOC
trainaug [54, 69] (10582 images), and evaluate on the validation set of
PASCAL using mean intersection over union (mIoU). For human part
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Task Dataset Metric R-101 strong baseline

Edge BSDS500 odsF ↑ 82.5 81.3 [97]
S.Seg VOC mIoU ↑ 78.9 79.4 [33]
H. Parts P. Context mIoU ↑ 64.3 64.9* [31]
Normals NYUD mErr ↓ 20.1 19.0 [13]
Saliency PASCAL-S maxF ↑ 84.0 83.5 [98]
Depth NYUD RMSE ↓ 0.56 0.58 [221]

Table 5.1: Architecture capacity: We report upper-bounds of perfor-
mance that can be reached on various competitive (but in-
homogeneous) datasets by our architecture, and compare to
strong task-specific baselines. All experiments are initialized
from ImageNet pre-trained weights (∗ means that COCO pre-
training is included). The arrow indicates better performance
for each metric.

segmentation we use PASCAL-Context [34] and mIoU. For surface nor-
mals we train on the raw data of NYUD [151] and evaluate on the test
set using mean error (mErr) in the predicted angles as the evaluation
metric. For saliency we follow [98] by training on MSRA-10K [36],
testing on PASCAL-S [114] and using the maximal F-measure (maxF)
metric. Finally, for depth estimation we train and test on the fully anno-
tated training set of NYUD using root mean squared error (RMSE) as the
evaluation metric. For implementation details, and hyper-parameters,
please refer to the Appendix.

Table 5.1 benchmarks our architecture against popular state-of-the-art
methods. We obtain competitive results, for all tasks. We emphasize
that these benchmarks are inhomogeneous, i.e. their images are not
annotated with all tasks, while including domain shifts when training
for multi-tasking (eg. NYUD contains only indoor images). In order to
isolate performance gains/drops as a result of multi-task learning (and
not domain adaptation, or catastrophic forgetting), in the experiments
that follow, we use homogeneous datasets.

Multi-task learning setup: We proceed to multi-tasking experiments
on PASCAL. We keep the splits of PASCAL-Context, which provides
labels for edge detection, semantic segmentation, and human part seg-
mentation. In order to keep the dataset homogeneous and the architec-
ture identical for all tasks, we did not use instance level tasks (detection,
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pose estimation) that are provided with the dataset. To increase the
number of tasks we automatically obtained ground-truth for surface
normals and saliency through label-distillation using pre-trained state-
of-the-art models ([13] and [33], respectively), since PASCAL is not
annotated with those tasks. For surface normals, we masked out pre-
dictions from unknown and/or invalid classes (eg. sky) during both
training and testing. In short, our benchmark consists of 5 diverse
tasks, ranging from low-level (edge detection, surface normals), to
mid-level (saliency) and high-level (semantic segmentation, human part
segmentation) tasks.

Evaluation metric: We compute multi-tasking performance of method
m as the average per-task drop with respect to the single-tasking base-
line b (i.e different networks trained for a single task each):

∆m =
1
T

T

∑
i=1

(−1)li (Mm,i −Mb,i) /Mb,i (5.4)

where li = 1 if a lower value means better for measure Mi of task i, and
0 otherwise. Average relative drop is computed against the baseline
that uses the same backbone.

To better understand the effect of different aspects of our method,
we conduct a number of ablation studies and present the results in
Tables (5.3-5.7).

We construct a second baseline, which tries to learn all tasks si-
multaneously with a single network, by connecting T task-specific
convolutional classifiers (1× 1 conv layers) at the end of the network.
As also reported by [98], a non-negligible average performance drop
can be observed (-6.6% per task for R-26 with SE). We argue that this
drop is mainly triggered by conflicting gradients during learning.

Effects of modulation and adversarial training: Next, we introduce
the modulation layers described in Section 5.3. We compare parallel
residual adapters to SE (Table 5.4) when used for task modulation. Per-
formance per task recovers immediately by separating the computation
used by each task during learning (-1.4 and -0.6 vs. -6.6 for adapters
and SE, respectively). SE modulation results in better performance,
while using slightly fewer parameters per task. We train a second
variant where we keep the computation graph identical for all tasks
in the encoder, while using SE modulation only in the decoder (Ta-
ble 5.5). Interestingly, this variant reaches the performance of residual
adapters (-1.4), while being much more efficient in terms of number of
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Database Type # Train Im. # Test Im. Edge S.Seg Parts Normals Sal Depth Albedo

PASCAL Real 4,998 5,105 X X X X∗ X∗

NYUD Real 795 654 X X X X
FSV Synth 223,197 50,080 X X X

Table 5.2: Multi-task benchmark statistics: We conduct the main vol-
ume of experiments on PASCAL for 5 tasks (∗ labels obtained
via distillation). We also use the fully labelled subsets of
NYUD, and the synthetic FSV dataset.

SE-bb #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑

1 70.3 63.98 55.85 15.11 63.92

X 1 71.3 64.93 57.12 14.90 64.17
5 68.0 58.59 53.80 16.68 60.71

X 5 69.2 60.20 54.10 17.04 62.10

Table 5.3: Baselines in PASCAL: Using SE blocks in ResNet backbones
(SE-bb) improves results. In all our experiments we use SE-bb
baselines for fair comparison.

parameters and computation, as only one forward pass of the encoder
is necessary for all tasks.

In a separate experiment, we study the effects of adversarial training
described in Section 5.4. We use a simple, fully convolutional dis-
criminator to classify the source of the gradients. Results in Table 5.6
show that adversarial training is beneficial for multi-tasking, increasing
performance compared to standard multi-tasking (-4.4 vs -6.6). Even
though the improvements are less significant compared to modulation,
they come without extra parameters or computational cost, since the
discriminator is used only during training.

SE RA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.10 6.62

X 5 70.5 62.80 56.41 15.27 64.84 1.42
X 5 71.1 64.00 56.84 15.05 64.35 0.59

Table 5.4: Type of Modulation: Both SE and RA are effective modula-
tion methods. Results on PASCAL.
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enc dec #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.1 6.62

X 5 70.6 63.33 56.73 15.14 63.23 1.44
X X 5 71.1 64.00 56.84 15.05 64.35 0.59

Table 5.5: Location of SE modulation: Modulating varying portions
of the network (e.g. encoder or decoder) allows trading off
performance and computation. Results in PASCAL.

mod A #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.10 6.62

X 5 69.7 62.20 55.04 16.17 62.19 4.34
X 5 71.1 64.00 56.84 15.05 64.35 0.59
X X 5 71.0 64.61 57.25 15.00 64.70 0.11

Table 5.6: Adversarial training: Experiments on PASCAL show that
adversarial training is beneficial both w/ and w/o SE modu-
lation.

backbone SEA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

R-26 1 71.3 64.93 57.12 14.90 64.17

R-26 5 69.2 60.20 54.10 17.04 62.10 6.62

R-26 X 5 71.0 64.61 57.25 15.00 64.70 0.11
R-50 1 72.7 68.30 60.70 14.61 65.40

R-50 5 69.2 63.20 55.10 16.04 63.60 6.81

R-50 X 5 72.4 68.00 61.12 14.68 65.71 0.04
R-101 1 73.5 69.76 63.48 14.15 67.41

R-101 5 70.5 66.45 61.54 15.44 66.39 4.50

R-101 X 5 73.5 68.51 63.41 14.37 67.72 0.60

Table 5.7: Backbones: Improvements on PASCAL from SE modulation
with adversarial training (SEA) are observed regardless of the
capacity/depth of the backbones.
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SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓

1 74.4 32.82 23.30 0.61

4 73.2 30.95 23.34 0.70 5.44

X 4 74.5 32.16 23.18 0.57 -1.22

Table 5.8: Improvements from SE with modulation (SEA) transfer to
NYUD dataset: We report average performance drop with
respect to single task baselines. We use R-50 backbone.

SEA #T Seg ↑ Albedo ↓ Disp ↓ ∆m% ↓

1 71.2 0.086 0.063

3 66.9 0.093 0.078 7.04

X 3 70.7 0.085 0.063 -0.02

Table 5.9: Improvements from SE with modulation (SEA) transfer to
FSV dataset: We report average performance drop with re-
spect to single task baselines. We use R-50 backbone.

The combination of SE modulation with adversarial training (Ta-
ble 5.6) leads to additional improvements (-0.1% worse than the single-
task baseline), while further adding residual adapters surpasses single-
tasking (+0.45%), at the cost of 12.3% more parameters per task (Fig. 5.5).

Deeper Architectures: Table 5.7 shows how modulation and adver-
sarial training perform when coupled with deeper architectures (R-50

and R-101). The results show that our method is invariant to the depth
of the backbone, consistently improving the standard multi-tasking
results.

Resource Analysis: Figure 5.5 illustrates the performance of each
variant as a function of the number of parameters, as well as the
FLOPS (multiply-adds) used during inference. We plot the relative
average per-task performance compared to the single-tasking R-101

variant (blue cross), for the 5 tasks of PASCAL. Different colors indicate
different backbone architectures. We see a clear drop in performance by
standard multi-tasking (crosses vs. circles), but with fewer parameters
and FLOPS. Improvements due to adversarial training come free of
cost (triangles) with only a small overhead for the discriminator during
training.
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Figure 5.5: Performance vs. Resources: Average relative drop (∆m%) as
a function of the number of parameters (left), and multiply-
adds (right), for various points of operation of our method.
We compare 3 different backbone architectures, indicated
with different colors. We compare against single-tasking
baseline (ST baseline), and multi-tasking baseline (MT base-
line). Performance is measured relative to the best single-
tasking model (R-101 backbone). An increase in perfor-
mance comes for free with adversarial training (Adv). Mod-
ulation per task (SE) results in large improvements in per-
formance, thanks to the disentangled graph representations,
albeit with an increase in computational cost if used through-
out the network, instead of only on the decoder (SE Dec-only
vs. SE). We observe a drastic drop in number of parameters
needed for our model in order to reach the performance of
the baseline (SE, Adv). By using both modulation and adver-
sarial training (Adv SE RA), we are able to reach single-task
performance, with far fewer parameters.

Including modulation comes with significant improvements, but
also with a very slight increase of parameters and a slight increase
of computational cost when including the modules on the decoder
(rectangles). The increase becomes more apparent when including
those modules in the encoder as well (diamonds). Our most accurate
variant using all of the above (hexagons) outperforms the single-tasking
baselines by using only a fraction of their parameters.

We note that the memory and computational complexities of the SE
blocks and the adapters are negligible, but since it affects the outputs of
the layer it means that we cannot share the computation of the ensuing
layers across all tasks, and thus the increased number of multiply-adds.
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Figure 5.6: t-SNE visualization of task-dependent feature activations
of a single image: Illustration at increasing depths of the
network (from left to right). Features in early layers are more
similar across tasks and progressively get more adapted to
specific tasks in later layers.

Learned Disentangled Representations: In order to highlight the
importance of task modulation, we plot the learned representations for
different tasks in various depths of our network. Figure 5.6 shows the
t-SNE representations [131] of the SE activations in equally spaced lev-
els of the network. The activations are averaged for the first 32 samples
of the validation set, following [79], and they are sorted per task. The
resulting plots show that in the early stages of the network the learned
representations are almost identical. They gradually become increas-
ingly different as depth grows, until they are completely different for
different tasks at the level of the classifier. We argue that this disentan-
glement of learned representations also translates to performance gains,
as shown in Tables (5.3-5.7).

Validation on additional datasets: We validate our approach in two
additional datasets, NYUD [151] and FSV [100]. NYUD is an indoor
dataset, annotated with labels for instance edge detection, semantic
segmentation into 41 classes, surface normals, and depth. FSV is a
large-scale synthetic dataset, labelled with semantic segmentation (3
classes), albedo, and depth (disparity).

Table 5.9 presents our findings for both datasets. As in PASCAL,
when we try to learn all tasks together, we observe a non-negligible
drop compared to the single-tasking baseline. Performance recovers
when we plug in modulation and adversarial training. Interestingly, in
NYUD and FSV we observe larger improvements compared to PASCAL.
Our findings are consistent with related works [221, 52] which report
improved results for multi-tasking when using depth and semantics.
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Figures 5.7 and 5.8 illustrate some qualitative examples, obtained by
our method in PASCAL and NYUD, respectively. Results in each row
are obtained with a single network. We compare our best model to the
baseline architecture for multi-tasking (without per-task modulation, or
adversarial training). We observe a quality degradation in the results
of the baseline. Interestingly, some errors are obtained clearly as a
result of standard multi-tasking. Edge features appear during saliency
estimation in Fig 5.7, and predicted semantic labels change on the
pillows, in areas where the surface normals change, in Fig 5.8. In
contrast, our method provides disentangled predictions that are able
to recover from such issues, reach, and even surpass the single-tasking
baselines.
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Figure 5.7: Qualitative Results in PASCAL: We compare our model
against standard multi-tasking. For the baseline, features
from edge detection appear in saliency estimation results,
indicating the need to disentangle the learned representa-
tions.

5.6 additional details and experimental evaluation

5.6.1 More results on NYUD and FSV

Table 5.10 illustrates the quantitative results obtained by our method
on NYUD [151] and FSV [100], by changing the backbone architecture.
Results are consistent among backbones, and by including modulation
and adversarial training to the pipeline, we get improved results with
respect to the multi-task and single-task baselines, irrespective of the
network depth.
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Figure 5.8: Qualitative Results in NYUD: We compare our model
against standard multi-tasking. The baseline predicts blurry
edges and depth, as well as inconsistent labels on the pillow
(where surface normals change). Our method is able to
recover from these issues.

5.6.2 Connection of ASTMT to UberNet

The architecture of [98] learns multiple tasks by using a common back-
bone and a light-weight decoder (skip connections and 1× 1 convo-
lutions) per task. We re-implement the UberNet architecture, and
we substitute the VGG [199] backbone of the original work with the
SE-ResNet [79] used in this chapter. The main difference with our archi-
tecture are the skip connections and 1× 1 convolutions that comprise
each task-specific head, instead of the powerful Deeplab-v3+ ASPP
decoder [33] used for ASTMT. Similarly to when training ASTMT, and
similarly to the observation of the original author, we observe a non-
trivial drop in performance when learning to multi-task with a common,
entirely shared backbone (Table 5.11). We plug-in SE and adversarial
training and we recover most of the drop. We provide results for all 3

datasets that have been used throughout this chapter. Results obtained
by our architecture are presented in the last row of each table. The
relatively lower performance especially for semantic tasks compared
to our method is due to the absence of a strong decoder. The observa-
tions regarding modulation and adversarial training are, nevertheless,
consistent.
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backbone SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓

R-26 1 72.9 29.87 24.34 0.650 0

R-26 4 72.4 27.74 24.83 0.729 5.50

R-26 X 4 73.5 30.07 24.316 0.625 -1.36
R-50 1 74.4 32.82 23.3 0.610

R-50 4 73.2 30.95 23.34 0.700 5.44

R-50 X 4 74.5 32.16 23.18 0.570 -1.22
R-101 1 74.9 35.90 22.90 0.580

R-101 4 73.8 31.20 23.07 0.650 6.63

R-101 X 4 75.6 35.60 22.73 0.560 -1.07
backbone SEA #T Seg ↑ Albedo ↓ Depth ↓ ∆m% ↓

R-26 1 69.77 0.087 0.065 0

R-26 3 66.71 0.090 0.073 6.41

R-26 X 3 71.36 0.085 0.065 -1.80
R-50 1 71.14 0.086 0.063 0

R-50 3 66.90 0.093 0.078 7.04

R-50 X 3 70.69 0.085 0.063 -0.02
R-101 1 72.10 0.086 0.063 0

R-101 3 68.12 0.091 0.072 8.75

R-101 X 3 72.24 0.083 0.062 -1.57

Table 5.10: ASTMT for NYUD (top), and FSV (bottom): Results with
different backbones: R-26, R-50, and R-101. Negative drop
indicates improved performance with respect to the single-
tasking baseline. Arrows indicate desired behaviour of each
metric.

5.6.3 ASTMT with MobileNet-v2 backbone

Our multi-tasking framework could find application in light-weight
CNNs designed for mobile phone applications. For example, by using
our framework, many different tasks can be executed with only a
single and small set of parameters being shipped to the end user. To
test this idea, we change our backbone to the light-weight MobileNet-
v2 [190], an architecture specifically designed for mobile phones. We
change the decoder accordingly: convolutions are changed to depth-
wise convolutions, and ReLU activations are changed to ReLU6. We pre-
train a variant that uses Squeeze and Excitation modules on ImageNet
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backbone SEA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

R-50-Uber 1 71.7 66.90 59.80 15.00 64.56

R-50-Uber 5 70.3 60.90 57.00 16.65 62.15 7.10

R-50-Uber X 5 70.5 65.50 60.15 14.94 64.98 0.43
R-50 X 5 72.4 68.00 61.10 14.80 65.70 n.a

backbone SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓

R-50-Uber 1 73.9 32.50 22.90 0.669 0

R-50-Uber 4 72.3 29.48 24.16 0.716 6.00

R-50-Uber X 4 73.7 31.19 23.46 0.632 0.30
R-50 X 4 74.5 32.20 23.20 0.570 n.a

backbone SEA #T Seg ↑ Albedo ↓ Depth ↓ ∆m% ↓

R-50-Uber 1 70.26 0.092 0.101 0

R-50-Uber 3 67.02 0.093 0.124 9.50

R-50-Uber X 3 69.45 0.091 0.111 3.32
R-50 X 3 70.70 0.085 0.063 n.a

Table 5.11: UberNet for PASCAL (top), NYUD (mid), and FSV (bot-
tom): Standard multi-task learning results in a significant
drop in performance, that is recovered with modulation and
adversarial training. Last rows of each table present results
obtained by our architecture.

(SE-MobileNet), and fine-tune for multi-task learning. We test standard
multi-tasking against the variants of our method that use SE modulation.
Table 5.12 summarizes our findings. Similarly to the experiments using
SE-ResNet, disentangling the representations for each task also helps
for MobileNet. By using SE per task both on the encoder and decoder,
our method outperforms the single-tasking baseline. Figure 5.9 puts
these results in perspective, comparing them to results obtained by
SE-ResNet architecture. It is remarkable that by using modulation,
MobileNet is no worse than the R-50 standard multi-tasking baseline
using much less computational cost, and only 8% of its parameters.

5.6.4 Implementation Details

In this section we provide the technical details for our implementation.
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Figure 5.9: Performance vs. Resources for MobileNet: Average rela-
tive drop as a function of the number of parameters (left),
and multiply-adds (right), for various points of operation of
our method. Different backbones are indicated with differ-
ent colors. MobileNet with our modulation is able to reach
R-50 results for standard multi-tasking, by using much less
parameters and computation.

backbone enc dec #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

MNet 1 69.5 62.10 54.88 14.88 66.30 0

MNet 5 67.2 54.10 53.00 16.76 62.70 7.57

MNet X 5 67.5 57.40 54.50 16.55 63.00 5.47

MNet X X 5 69.2 61.60 55.17 15.21 65.60 0.97

Table 5.12: Results using MobileNet in PASCAL: Modulation with SE
is able to recover the performance that is lost using standard
multi-task learning.

Generic hyper-parameters: The entire hyper-parameter search was
performed on the single-task baselines. For all tasks, we use synchro-
nized SGD with momentum of 0.9 and weight decay of 1e-4. We set
the initial learning rate to 0.005 and use the poly learning rate [31]. All
our models are trained on a single GPU with batch size 8, and spatial
input of 512× 512. We used multi-GPU training with batch size 16 and
synchronous batchnorm layers only for the sanity check experiments
(Table 5.1), for a fair comparison with competing methods. Standard
flipping, rotations, and scaling was used for data augmentation. The
number of total epochs is set to 60 for PASCAL [54], 200 for NYUD [151],
and 3 for the large-scale FSV [100].

Weighting of the losses: Related work deals with automatically
weighting of the losses for multi-task learning [35, 193]. We compared
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these methods to selecting the optimal weights by grid-search. In our
setup, we found out that grid-search works better, probably because
of the very imbalanced optimal parameters (optimal weighting of loss
for edge detection is 50 times higher than semantic segmentation, for
example). In particular, we re-implemented [193] that uses multi-
objective optimization to re-weight the gradients from each task, in
order to optimize the shared parts of the network towards a direction
useful for all tasks. This lead to better results than uniform weights,
however we obtained better results by simple grid-search.

For all our experiments, when training for multiple tasks, we divide
the learning rate of the shared layers by the number of tasks (T), since
T updates are happening for the same mini-batch on the shared part of
the network.

During training, we used the following formula for the weights of
the losses:

L = (1− wd) ·
T

∑
t=1

wt · Lt + wd · Ld, (5.5)

where wt weights the loss Lt of task t, and wd the loss Ld of the dis-
criminator. All losses are averaged to the number of samples that the
prediction contains (W × H × C× N).

Edge Detection: For edge detection, we use wt = 50 and binary cross-
entropy loss. As is common practice [220, 97, 139], the positive pixels
are weighted more (0.95) than the negative ones (0.05), to account for
the class imbalance. When training for a single task in BSDS (Table 5.1),
where there are more than a single annotators, we use the multi-instance
learning (MIL) loss of [97]. No MIL is used when training in PASCAL or
NYUD. We follow the common evaluation on those two datasets [139]
by setting the maximum allowed mis-localization of edges (maxDist
parameter) to 0.0075 and 0.011 for PASCAL and NYUD, respectively.

Semantic Segmentation: For semantic segmentation, we used wt =

1, and cross-entropy loss. When training on VOC trainaug [33] (Ta-
ble 5.1), we did not finetune separately on VOC val.

Human Part Segmentation: For human part segmentation, we used
wt = 2. and cross-entropy loss. Samples that do not contain any
humans did not contribute to the loss.

Surface Normals: For surface normal estimation, we used wt = 10
and L1 loss with unit-vector normalization. During rotation augmenta-
tion, we carefully rotate the unit vector of the surface normals accord-
ingly, to point to a consistent direction.
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Saliency: For saliency, we used wt = 5 and the balanced binary
cross-entropy loss, as in the case of edge detection.

Albedo: For albedo, we use wt = 10, and standard L1 loss. We
emphasize that our architecture is not optimal for this task, since
the output is 4 times smaller than the input, and tiny details are not
captured. Using an architecture suited for albedo is out of the scope of
this chapter.

Monocular Depth: For monocular depth estimation we use wt = 1,
and the loss of [52], which is a combination of L1 loss and a smooth-
ness term that enforces the spatial gradients of the prediction to be
consistent with the ones of the ground truth. Our experiments showed
that including the smoothness term to the loss leads to better results,
quantitatively and qualitatively.

Discriminator: We use a fully-convolutional discriminator, which
consists of two 1× 1 conv layers and a ReLU activation. We did not
observe improvements when using discriminators of larger depth. We
normalize the gradient of the losses of the tasks by their norm before
passing them through the discriminator. This practice makes training
more stable because the norm of the gradients becomes smaller as
training progresses. We use wd = 0.1.

Further Technical Details: ASTMT is implemented in PyTorch [158].
During weight update PyTorch applies momentum and weight decay to
all modules in the definition of a network. This behaviour is not desired
When using generic and task-specific weights, since the task-specific
ones are only used in the forward pass of the particular task, which
leads to T− 1 unwanted updates. This behaviour is avoided by tracing
the graph of computation and updating only the weights that were
used, which also translated into quantitative improvements.

5.7 conclusions

In this chapter we have shown that we can attain, and even surpass
single-task performance through multi-task networks, provided we
execute one task at a time. We have achieved this by introducing
Attentive Single-Tasking of Multiple Tasks (ASTMT), a method that
allows a network to ‘focus’ on the task at hand in terms of task-specific
feature modulation and adaptation.

In a general vision architecture one can think of task attention as be-
ing determined based on the operation currently being performed - e.g.
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using object detection to find an object, normal estimation and segmen-
tation to grasp it. Tasks can also be executed in an interleaved manner,
with low-level tasks interacting with high-level ones in a bottom-up/top-
down cascade [109]. We intend to explore these directions in future
research.
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6
A D D I T I O N A L R E S E A R C H

This chapter presents the abstracts and the respective publications of
the research that has been conducted during my PhD research, but
are not part of this dissertation. Connections of these works with the
contributions of this dissertations have been made in the respective
chapters.

6.1 deep retinal image understanding

This section presents the abstract of Deep Retinal Image Understand-
ing (DRIU) [140], a unified framework of retinal image analysis that
provides both retinal vessel and optic disc segmentation. We make use
of deep Convolutional Neural Networks (CNNs), which have proven
revolutionary in other fields of computer vision such as object detection
and image classification, and we bring their power to the study of
eye fundus images. DRIU uses a base network architecture on which
two set of specialized layers are trained to solve both the retinal vessel
and optic disc segmentation. We present experimental validation, both
qualitative and quantitative, in four public datasets for these tasks. In
all of them, DRIU presents super-human performance, that is, it shows
results more consistent with a gold standard than a second human
annotator used as control.

6.2 one-shot video object segmentation

This section presents the abstract of One-Shot Video Object Segmenta-
tion (OSVOS) [25], a method that tackles the task of semi-supervised
video object segmentation, i.e, the separation of an object from the
background in a video, given the mask of the first frame. Our method
is based on a fully-convolutional neural network architecture that is
able to successively transfer generic semantic information, learned on
ImageNet, to the task of foreground segmentation, and finally to learn-
ing the appearance of a single annotated object of the test sequence
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(hence one-shot). Although all frames are processed independently, the
results are temporally coherent and stable. We perform experiments
on three annotated video segmentation databases, which show that
OSVOS is fast and improves the state of the art by a significant margin
(79.8% vs 68.0%).

6.3 video object segmentation without temporal informa-
tion

Video Object Segmentation, and video processing in general, has been
historically dominated by methods that rely on the temporal consis-
tency and redundancy in consecutive video frames. When the temporal
smoothness is suddenly broken, such as when an object is occluded,
or some frames are missing in a sequence, the result of these methods
can deteriorate significantly. This sections presents the abstract of a
method [136] that explores the orthogonal approach of processing each
frame independently, i.edisregarding the temporal information. In par-
ticular, it tackles the task of semi-supervised video object segmentation:
the separation of an object from the background in a video, given its
mask in the first frame. We present Semantic One-Shot Video Object
Segmentation (OSVOSS), based on a fully-convolutional neural network
architecture that is able to successively transfer generic semantic infor-
mation, learned on ImageNet, to the task of foreground segmentation,
and finally to learning the appearance of a single annotated object of the
test sequence (hence one shot). We show that instance-level semantic
information, when combined effectively, can dramatically improve the
results of our previous method, OSVOS. We perform experiments on
two recent single-object video segmentation databases, which show
that OSVOSS is both the fastest and most accurate method in the state
of the art. Experiments on multi-object video segmentation show that
OSVOSS obtains competitive results.
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7
D I S C U S S I O N

7.1 summary of contributions

In this dissertation we have presented four different ways to use low-
level features, i.e edges and boundaries, for higher level scene under-
standing tasks. In particular, we showed (a) how to use boundary
detection and hierarchical image segmentation to enhance semantic
segmentation and object detection, (b) how to use extreme clicks pro-
vided by humans for object segmentation, (c) how to establish 3D-2D
correspondences for calibration, registration, and 3D reconstruction by
detecting points, and (d) how to learn multiple low-level and high-level
tasks jointly without compromising performance.

In Chapter 2 we presented Convolutional Oriented Boundaries (COB),
a method that uses deeply learned boundaries in multiple scales for
hierarchical image segmentation in a single forward pass of a CNN.
We showed that learning the orientation of boundaries on top of their
strength leads to more accurate region hierarchies, that improve the
state of the art in various boundary detection benchmarks (BSDS, PAS-
CAL Context, PASCAL Segmentation, NYUD) as well as in benchmarks
for segmented object proposals. We illustrated that snapping semantic
segmentation results of popular algorithms to COB regions improves
their performance, indicating that boundary detection and semantic
segmentation provide complementary information. COB bounding box
object proposals also help object detection by replacing popular object
proposal algorithms. Our method is also fast compared to the existing
region hierarchy methods, by using a sparse matrix representation of
the boundaries, running at 1 second per image.

In Chapter 3 we presented Deep Extreme Cut (DEXTR), that turns
extreme clicks provided by the user into accurate segmentation masks
of objects. We do so by using a heatmap representation of the extreme
points, with Gaussians centered on each of them. The heatmap represen-
tation along with the cropped RGB image are fed to a dense prediction
network to recover the mask of the object of interest, i.e the one that the
extreme points belong to. We show that DEXTR compares favorably
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to the state of the art for class-agnostic instance segmentation, and
interactive object segmentation. We illustrate the practical applicability
of DEXTR by using it to initialize the masks of semi-supervised video
object segmentation algorithms, and by using it for fast and accurate
annotation. Performance is evaluated on various benchmarks (PASCAL,
COCO, Grabcut, DAVIS 2016/2017).

In Chapter 4 we presented how to provide visual guidance for robot-
assisted retinal surgery in a complicated setup that comprises of an
accurate co-manipulated robotic arm, a stereo-microscope and two RGB
cameras in an uncalibrated stereo setup. We show that by detecting
specific keypoints of the robotic arm on the images we can establish 3D
(from the accurate robot kinematics) to 2D (from our pixel coordinates)
correspondences. Once detection of keypoints is accurate, we are able
to collect correspondences just by moving the robot, which allows us
to cover regions on demand. We observe that conventional calibration
techniques using checkerboards are neither practical nor suitable for
the affine cameras of the microscope. With our technique we achieve
100µm accuracy for 3D reconstruction, in real-time.

In Chapter 5 we presented Attentive Single-Tasking of Multiple Tasks
(ASTMT) for jointly training a CNN architecture for multiple low-, mid-,
and high-level dense prediction tasks. We discuss problems such as net-
work architecture capacity and task interference when jointly training
for potentially unrelated or conflicting tasks. We provide two different
solutions by (a) building a CNN that is able to perform all tasks but
only a single task at a time, and (b) using adversarial training on the
gradients of each of the tasks, in order to make them indistinguishable.
The benefit from statistically indistinguishable gradients is that no task
dominates the other during joint training. We propose different mod-
ulation of the shared network depending on the task by dynamically
changing the computational graph and using residual adapters and
squeeze and excitation as per-task modulators. Experiments on 3 differ-
ent benchmarks (PASCAL, NYUD, and FSV) show that ASTMT, built
on top of a powerful network, such as Deeplab-v3+, is able to reach, or
even surpass single-tasking performance when jointly training for 3, 4,
or even 5 different tasks.
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7.2 discussion, limitations, and future research

This section is dedicated to discussing limitations of the various con-
tributions presented in this thesis, and trigger potential directions for
future research.

7.2.1 Convolutional Oriented Boundaries

Even though COB is a powerful tool that has been proven useful for
various tasks outside the scope of this thesis, such as enhancing the
output of video object segmentation [25, 136], extracting boundaries for
semantic segmentation from limited data [145] etc., there are certain
drawbacks that should be discussed thoroughly.

• It is not an end-to-end solution: The part of the pipeline that uses the
predicted contours in multiple scales and turns them into region
hierarchies is - while being orders of magnitude faster - very
similar to [166], which is hand-crafted. It is composed of various
components that are not differentiable (eg. oriented watershed
transform) and cannot follow the modern paradigm of end-to-end
training with backpropagation.

• Non-practical for object detection pipelines: In Section 2.6.3 we showed
that bounding box proposals generated by recovering a bounding
box from segmented proposals of COB can improve object detec-
tion when plugged into the Fast R-CNN [61] pipeline. However,
modern ROI-based object detectors [178, 73, 45] have substituted
external algorithms that generate object proposals by end-to-end
generation of bounding-box proposals, in the same CNN archi-
tecture used for detection, achieving much better results than
when using COB. In addition, proposal-free approaches for object
detection that gain more and more attention [176, 124, 177, 121]
can not benefit from COB proposals, since they do not require
them. The practical applicability of COB for object detection is
thus shadowed by recent, more practical developments.

• In need of yet another CNN: The improvements that COB results in
for higher-level tasks come with the overhead of including COB
into their respective pipelines, i.e an additional network for region
hierarchy prediction. The overhead is not trivial when discussing
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about real-time methods (COB is not a real-time method; it takes
1 second to generate results).

All of the above limit the practical applicability of COB for fast
applications. Even though using sparse matrix representations for the
boundaries significantly reduced its speed compared to popular region
hierarchy methods [166, 209], the computational overhead is still large.
In the future, interesting research directions include end-to-end training
for region hierarchies which can achieve real-time performance with
light-weight networks.

7.2.2 Deep Extreme Cut

DEXTR has been successful in terms of impact and triggered further
research [3, 155, 238] due to its practical applicability. Here we discuss
some limitations of this work:

• DEXTR is not very interactive: Although we benchmarked DEXTR
against methods for interactive segmentation and achieved state-
of-the-art results, in reality our method is not very interactive.
DEXTR works with 4, 5, or 6 points at most for interactive object
segmentation, without further improvements when adding more
points. Its strength lies on the fact that the initial 4 extreme points
are very well defined, we can recover a bounding box, and the
initial segmentation is very accurate. The ideal interactive object
segmentation method should improve on initial predictions based
on user input as the number of provided cues increases. Our
method does not perform well in cases that the initial prediction
is very bad, and the correct outcome mainly relies on interaction
with the user.

• Weaker performance in stuff classes: DEXTR is primarily designed
for foreground classes, for which we obtain a mIoU of 91.5%
in PASCAL (Table 3.3). However, when we re-train for stuff
classes performance drops to mIoU of 81.75% in PASCAL Context.
Even if the results are fairly satisfying, better performance can
be achieved by directly applying modern semantic segmentation
networks (around 85-89% [233, 33]). We attribute this to the
fact that stuff (or background) classes do not have a notion of
instances (for example an image with two connected components
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of ‘sky’ class does not have 2 skies). Thus, the task of segmenting
background classes given their extreme points requires further
considerations.

7.2.3 Automatic Tool Landmark Detection for Stereo Vision in Robot-Assisted
Retinal Surgery

Although our pipeline for calibration, reconstruction, and registration
from detected keypoints works well in open-sky eyes, and is easily
adjustable to different types of robotic surgery, in-vivo retinal surgery
is a special case which comes with many challenges:

• Distortions from the lens of the examined eye: During in-vivo surgery,
the setup that needs to be calibrated includes the lens of the
examined eye. For this reason using the tool that is inside the eye
for calibration is a good idea, but the distortions introduced by
the lens need to be modeled as well, which is not done in our
work.

• Strong illumination changes, bleeding: In our simulations on porcine
eyes we did not take into account strong illumination changes
and other sources of smooth texture-less areas such as bleeding,
which is very common in patients with retinal disorders. These
factors play an important role for finding sufficient amount of
correspondences for 3D reconstruction.

• The surgeon’s movements are limited by the incision point of the tool:
Even though in theory we acquire correspondences from just
moving the tool in order to calibrate, in practice these movements
are limited by the incision point of the tool. The co-manipulated
robot is specifically designed to be stable at the incision point,
thus the possible movements are limited to rotation around it, and
to translation along the axis of the tool. This constraint together
with the physical constraints of the eye (can not go past the retina
or the boundaries of the eye) limit the movements of the robotic
tool.

• Data are difficult to acquire: In-vivo data of a not medically ap-
proved setup are very difficult to acquire. Even after approval,
such data are acquired by conducting animal trials that need
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coordination of surgeons, hospitals, and engineers. In order to
study in-vivo retinal surgery of humans, realistic data need to be
acquired. No such data are available yet for robot-assisted retinal
surgery, to the best of our knowledge.

• In need of reliable robot kinematics: Our assumption for developing
our method is that 3D kinematics of the robot are accurate. When
this assumption does not hold, for example if the robotic tool
bends because the incision point is not correctly calibrated, our
entire pipeline collapses. The Achilles heel of our method, and
thus a bottleneck in safety, is that it relies too much in accurate
robot kinematics, and it will stop working if acquisition of such
information is not possible.

Of course, when it comes to real surgery, other sensors are to be
used as well (distance sensors on the tool, Optical Coherence Tomog-
raphy devices, etc.). Nevertheless, our method is the first to tackle 3D
reconstruction and registration by using only RGB affine microscopic
cameras, and motivates future work in this direction. As future work, it
would be very interesting to fuse the information that all these sensors
provide. Combining less accurate 3D reconstruction from RGB cameras,
with more accurate information from OCT devices (that are however
slower and with limited field of view), and with distance sensors that
are very fast and accurate (but their information is limited to a single
point) is a very challenging topic. Towards 3D semantic understanding
of the retina, the approach that we took in this project was combining
our two methods: [140] for 2D semantic segmentation of vessels and
optic nerve, and [171] for 3D reconstruction. By projecting 2D segmen-
tation on top of 3D reconstruction results, we were able to obtain a 3D
map of the retina. Future research could investigate ways to combine
the two components with an end-to-end approach. Together with in-
vivo data processing, this area of research has many exciting challenges
to solve. Solving the task convincingly is the only step towards clinical
validation, approvals, and trials for real applications.

7.2.4 Attentive Single-Tasking of Multiple Tasks

Interpretations of multi-task learning: Multi-task learning (MTL) has
various interpretations across the different contributions in literature.
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The different meanings are usually attributed to very close relationships
of MTL with the following topics:

• Domain Adaptation is the task of bridging the statistics of two or
more datasets. Domain adaptation is necessary when we need
to use the (usually cheaply acquired) data of the source dataset
to train a model that performs well on the (usually expensive to
acquire) target dataset. If the statistics of the two datasets are
not similar, this is a difficult problem due to domain shifts. In
connection to MTL that predicts different outputs given a single
input, the goal of domain adaptation is to predict the same output
given inputs from different domains. The usage of those two
terms is often confusing and subjective [127, 91]. Domain shifts
in MTL can arise when using two partially labeled datasets. In
connection to Chapter 5, if we want to jointly predict monocular
depth and human parts, we need to train from both the NYUD
dataset of indoor scenes and PASCAL images that are annotated
with the respective tasks. Which brings us to the next bullet point.

• Catastrophic Forgetting [94, 116] happens when one task does
not recur for long time intervals in a MTL or domain adapta-
tion scenario. For example, after fine-tuning the weights of an
ImageNet-pretrained network for a different task, the network
loses its ability to perform ImageNet classification without re-
training. For MTL forgetting can happen when a task is not
executed for a long time, and the weights of the shared network
update towards optimizing other tasks. This can happen when
training from different partially annotated datasets. In connection
to our previous example, forgetting happens when jointly training
for human parts and monocular depth by using the 1500 images
of PASCAL and the hundreds of thousands images of NYUD. In
practical terms, the signal for human part segmentation is lost in
the proportionally huge amount of updates for monocular depth
prediction. And this brings us to the following problem.

• Training from additional, imbalanced datasets is observed for MTL [217,
98] when there is additional, partially annotated data that can
be used as additional source of supervision. How to effectively
handle the separate data sources is an active topic of research. In
fact, it has been shown that tasks can benefit from MTL when
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data are not sufficient for a task, but there are available data for a
different, closely related task [123, 72].

So how can we ablate performance when training from different
imbalanced datasets, that are partially annotated? Are our results
improving because of ‘universal representations’ created by using MTL?
Are improvements attributed to using more data from a different data
source? On the opposite side, did our results get worse because of
task interference and limited network capacity? Or due to catastrophic
forgetting and domain shifts because we used an additional large
dataset? These are questions that MTL alone is not able to answer,
because they result from a composition of all the above topics.

In ASTMT we included many different, potentially unrelated tasks,
with a diversity in losses and objectives. However, performance gains
and drops are attributed to pure multi-tasking, because we isolated all
the other sources of performance changes. For each experiment we used
one single dataset (as opposed to experiencing domain shifts and using
additional data), and all images of that dataset were annotated with la-
bels from all tasks (as opposed to catastrophic forgetting). Even though
the study of MTL isolated from all other topics is very interesting from
the point of view of research, in the real world we need systems that
effectively handle multiple datasets, forgetting, domain adaptation, and
multi-task learning, so that we exploit all possible sources of data to
feed data-hungry CNN methods, while being able to ablate the sources
of performance change at the same time. Building systems that can
handle all of the above is a very interesting line of future research.

Instance-level tasks: Tasks for instance-level recognition such as
object detection [61, 178], semantic instance segmentation [73], multi-
person pose estimation [27], and dense pose prediction [8] were not
included in ASTMT despite the partial availability of their labels. The
reason is that the most well-performing architectures for those tasks
operate on Region of Interests (ROI) [178]. Combining ROI-based ar-
chitectures with the fully convolutional architecture used in ASTMT
requires compromises (deeper task-specific heads, input/output reso-
lution, treatment of batchnorm layers [83] along with batch size) that
would be difficult to ablate. However, these are important tasks that are
being tackled more and more with fully convolutional architectures [117,
113, 152, 153, 105]. In future work it would be very interesting how
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instance-level and category-level tasks interact with each other [98] with
a unified, consistent architecture.

7.3 open-sourced contributions

Reproducible research and open-sourced repositories are one of the
main reasons that the fields of computer vision and machine learning
are evolving with high speed. Small details that are not well-explained
in a paper, hyper-parameter values and also well-structured code that
one can learn a lot from, are available in publicly released repositories.
The results obtained in this dissertation are a product of inspiration
from such open-sourced research. With a feeling of gratitude to our
community, all components of this dissertation, including the additional
research conducted during my PhD studies are open-sourced to help
future researchers:

• Code, pre-computed results, pre-trained models, and benchmarks
for Convolutional Oriented Boundaries (Chapter 2) are publicly
available at http://people.ee.ethz.ch/~cvlsegmentation/cob/.

• All resources of Deep Extreme Cut (Chapter 3) are available at
http://people.ee.ethz.ch/~cvlsegmentation/dextr/.

• The dataset of correspondences used for calibration and 3D recon-
struction, and to train automatic detection of keypoints (Chapter 4)
is available at http://people.ee.ethz.ch/~kmaninis/keypoints2stereo/.

• All resources for Attentive Single-Tasking of Multiple Tasks (Chap-
ter 5) are available at http://people.ee.ethz.ch/~kmaninis/

astmt/.

• All resources for Deep Retinal Image Understanding and One-
Shot Video Object Segmentation (Chapter 6) are available in http:

//people.ee.ethz.ch/~cvlsegmentation/.
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[69] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.

”Semantic contours from inverse detectors.“ In: International
Conference on Computer Vision (ICCV). 2011 (cit. on pp. 6, 10, 25,
34–36, 47, 89).

[70] C. G. Harris and M. Stephens. ”A combined corner and edge
detector.“ In: Alvey vision conference. Vol. 15. 50. 1988, pp. 10–5244

(cit. on p. 1).

[71] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, ISBN: 0521623049, 2003

(cit. on pp. 61–63, 68).

[72] K. He, R. Girshick, and P. Dollár. ”Rethinking imagenet pre-
training.“ In: International Conference on Computer Vision (ICCV).
2019 (cit. on p. 114).

[73] K. He, G. Gkioxari, P. Dollár, and R. Girshick. ”Mask R-CNN.“
In: International Conference on Computer Vision (ICCV). 2017 (cit.
on pp. 39, 44, 48, 79, 81–83, 109, 114).

[74] K. He, X. Zhang, S. Ren, and J. Sun. ”Deep Residual Learning
for Image Recognition.“ In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016 (cit. on pp. 2, 5, 7, 9, 13, 19,
44, 62, 64, 65, 72).

[75] R. Horaud, S. Christy, and R. Mohr. ”Euclidean reconstruction
and affine camera calibration using controlled robot motions.“ In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1997 (cit. on pp. 62, 63, 67).

[76] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. ”What makes
for effective detection proposals?“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 38.4 (2016), pp. 814–830

(cit. on p. 34).

[77] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. ”What makes
for effective detection proposals?“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 38.4 (2016), pp. 814–830

(cit. on p. 42).

[78] J. Hu, L. Shen, S. Albanie, G. Sun, and A. Vedaldi. ”Gather-Excite:
Exploiting Feature Context in Convolutional Neural Networks.“
In: arXiv:1810.12348 (2018) (cit. on p. 84).

124



bibliography

[79] J. Hu, L. Shen, and G. Sun. ”Squeeze-and-excitation networks.“
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018 (cit. on pp. 84, 86, 96, 98).

[80] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

”Densely connected convolutional networks.“ In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on
p. 2).

[81] A. Humayun, F. Li, and J. M. Rehg. ”The Middle Child Problem:
Revisiting Parametric Min-cut and Seeds for Object Proposals.“
In: International Conference on Computer Vision (ICCV). 2015 (cit.
on pp. 31, 32).

[82] A. Humayun, F. Li, and J. M. Rehg. ”RIGOR: Recycling Inference
in Graph Cuts for generating Object Regions.“ In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2014

(cit. on pp. 31, 32, 34).

[83] S. Ioffe and C. Szegedy. ”Batch normalization: Accelerating
deep network training by reducing internal covariate shift.“ In:
arXiv:1502.03167 (2015) (cit. on p. 114).

[84] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. ”Crisp bound-
ary detection using pointwise mutual information.“ In: European
Conference on Computer Vision (ECCV). 2014 (cit. on p. 10).

[85] S. D. Jain and K. Grauman. ”Click Carving: Segmenting Objects
in Video with Point Clicks.“ In: Conference on Human Computation
and Crowdsourcing (HCOMP). 2016 (cit. on p. 42).

[86] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. ”Caffe: Convolutional Architec-
ture for Fast Feature Embedding.“ In: arXiv:1408.5093 (2014)
(cit. on p. 18).

[87] B. Jin, M. V. Ortiz Segovia, and S. Susstrunk. ”Webly Supervised
Semantic Segmentation.“ In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017 (cit. on p. 41).

[88] A. Kendall, Y. Gal, and R. Cipolla. ”Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics.“
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018 (cit. on p. 83).

125



bibliography

[89] A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele.

”Simple Does It: Weakly Supervised Instance and Semantic Seg-
mentation.“ In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017 (cit. on pp. 40, 41).

[90] A. Khoreva, R. Benenson, M. Omran, M. Hein, and B. Schiele.

”Weakly Supervised Object Boundaries.“ In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on
pp. 9, 10, 24, 25, 27, 35).

[91] E. Kim, C. Ahn, P. H. Torr, and S. Oh. ”Deep Virtual Networks
for Memory Efficient Inference of Multiple Tasks.“ In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2019 (cit. on p. 113).

[92] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. ”Panoptic
segmentation.“ In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2019 (cit. on p. 42).

[93] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C.
Rother. ”Instancecut: from edges to instances with multicut.“
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017 (cit. on p. 10).

[94] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-
Barwinska, et al. ”Overcoming catastrophic forgetting in neural
networks.“ In: national academy of sciences 114.13 (2017), pp. 3521–
3526 (cit. on pp. 83, 113).

[95] J. Kittler. ”On the accuracy of the Sobel edge detector.“ In: Image
and Vision Computing 1.1 (1983), pp. 37–42 (cit. on p. 8).

[96] I. Kokkinos. ”Boundary detection using F-measure-, filter-and
feature-(f3) boost.“ In: European Conference on Computer Vision
(ECCV). 2010 (cit. on pp. 8, 9).

[97] I. Kokkinos. ”Pushing the boundaries of boundary detection
using deep learning.“ In: International Conference on Learning
Representations (ICLR). 2016 (cit. on pp. 5, 7–9, 35, 90, 102).

[98] I. Kokkinos. ”UberNet: Training a Universal Convolutional Neu-
ral Network for Low-, Mid-, and High-Level Vision Using Di-
verse Datasets and Limited Memory.“ In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on
pp. 79, 83, 90, 91, 98, 113, 115).

126



bibliography

[99] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. ”Statistical
edge detection: Learning and evaluating edge cues.“ In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
25.1 (2003), pp. 57–74 (cit. on p. 8).
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